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A B S T R A C T

Flammability limits must be identified in order to assess and control handling risks of particular processes
according to combustion product composition and environmental conditions. Thereby, the present paper aims to
present a model that can predict flammability limits for ethanol-air blends with at different moisture con-
centrations by Kriging interpolation techniques. The model is based on experimental results to determine
flammability limits of ethanol-air blends, and evaluate different moisture concentrations in ethanol composition.
It has accurately predicted the flammability limits of ethanol-air blends at temperatures ranging between 20 °C
and 210 °C, pressure values ranging from 40 kPa to 101.3 kPa, ethanol moisture concentration at 0.5% and 8%,
and ethanol volume percentages from 1% to 35%. Thus, it is a valid tool to accurately and efficiently determine
flammability limits of ethanol-air blends.

1. Introduction

Risks from combustion products and fuels have been posed by a
wide variety of industrial processes, as well as transportation and sto-
rage operations. Fuel-air blends combust once their concentrations are
within well-defined limits, i.e. lower and upper limits, also known as
flammability limits (FL) or explosivity [1], which are usually de-
termined experimentally. Since FLs are so important, many different
experimental methods have been developed in order to determine them
[2–5]. However, such experimental procedures are complex and time-
consuming, especially when pressure and temperature conditions are
rather high [6].

A large variety of empirical and semi-empirical methods are cur-
rently proved to determine flammability limits of fuel blends based on
some of their characteristics. Generally speaking, these methods are
adjusted so as to determine FLs. However, there are a differences when
estimating upper flammability limits experimentally (UFLs) in com-
parison with those predicted theoretically [7].

Among the theoretical methods found in literature, some are worth
mentioning, such as those based on combustion enthalpy for UFLs es-
timation [8,9], the stoichiometric concentration of blends [10–12], a
few on vapor pressure [13], and some on the number of moles of the

fuel under analysis [7]. On the other hand, Coward and Jones [14]
stated that FLs should be determined at constant pressure, whose
method has also been adopted by Mishra and Rahman [15]. A com-
bustion process under constant pressure has been carried out by other
researchers to determine FLs, which is consistent with the experimental
determination [16].

The present study has not been focused on physical processes di-
rectly, but it is based on some characteristics of combustion processes in
order to predict FLs of ethanol-air blends (previously specified ranges of
pressure, temperature, ethanol content and moisture concentration)
with a considerable degree of approximation. Furthermore, a statistical
analysis has been conducted, through which very good results were
obtained for predicting FLs of ethanol-air blends. In another manu-
script, predicted FLs theoretically [17], especially UFLs regarding the
physical principle of combustion, has already been approached. In this
manuscript, the developed method applies the basic combustion theory
and chemical equilibrium. The UFLs are determined by correlating a
parameter named θ, which is the ratio of adiabatic flame temperature at
stoichiometric composition to adiabatic flame temperature at UFL
composition [17].

This paper is aimed at introducing a FLs prediction model for
ethanol-air blends with different moisture concentrations based on
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Kriging interpolation techniques. The model has been developed
through 342 experiments that were conducted on an experimental
bench designed specifically for this research.

The method proposed herein offers advantages and disadvantages.
The main disadvantage is that it only allows predicting FLs of ethanol-
air blends within the aforementioned pressure ranges (mix), fuel vo-
lume, moisture concentration and temperature. However, its major
advantage is that FLs have been predicted through an interpolation
method with a reasonable degree of accuracy because deviations would
originate essential approximations from experimental measurements.

Ethanol has been used in Brazil for 20 years as fuel for automotive
vehicles, which is the only country worldwide where ethanol can be

solely used as fuel in vehicles. In recent years, tests have been carried
out on the use of ethanol in aircrafts by using the same kind of alcohol
that is typically used in the Brazilian vehicular fleet. There are 02 types
of ethanol sold in Brazil: the anhydrous ethanol with alcohol content of
99.5% in mass and hydrated ethanol with alcoholic content of 92% in
mass and 96% in volume, which have been selected for the present
experimental tests.

Alcohol cannot only be used in the automotive industry, but also in
the aeronautical industry, thus it is initially proposed to use the same
types of alcohol with the same moisture concentration as the one used
by the Brazilian automotive industry. Therefore, the prediction model
proposed herein allows predicting the FLs in fuels with moisture con-
centration ranging between high (8%) and low (0.5%) values.

The presently developed experimental bench was designed for
aeronautical applications, thus the present study has been conducted
with operating pressures below atmospheric pressure, e.g. by con-
sidering a typical cruising altitude of 40,000 ft (approximately
18.82 kPa). Thereby, the proposed model is suitable for predicting FLs
of ethanol-air blends at temperatures and pressure conditions within
the previously specified ranges. (40 kPa–101.3 kPa).

Table 1
Parameters considered in experimental measurements.

Parameter Range Units

Humidity content 0.5–8.0 %
Fuel volume in the mixture 1–35 %
Pressure in the container 40–101.3 kPa
Mixture temperature 20–220 °C

Fig. 1. Flammability apparatus.

Fig. 2. Flammability apparatus (experimental bench testing).
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2. Methodology: Kriging models and Response Surface
Methodology

Data interpolation allows drawing maps of continuous surfaces for
obtaining a discrete set of data points. However, when there are too

many data points, its use is limited [18]. The Kriging method is an
interpolation technique that uses an estimation procedure which pro-
vides good linear assumptions of analyzed values by choosing a
weighted average of sample values with the least variance. This method
quantifies spatial data structure by variograms that utilize statistical
procedures, in which it is assumed that data closer to a known point has
greater weight or influence over interpolation. This influence is reduced
as data moves away from the observed point [19].

Another aspect that should be considered in the Kriging analysis is
the tendency for isotropy or anisotropy. Anisotropy indicates whether a
variable has spatial dependence towards one or more directions. If it is
stronger, it can be used to determine more homogeneous areas ac-
cording to the unit of measurement, which can be useful for de-
termining experimental regions [20].

The Response Surface Methodology (RSM) is a set of mathematical
and statistical techniques that are utilized to model and analyze pro-
blems of several individual or combined parameters. It was developed
by Box and Wilson [21] with the aim of studying the relationship be-
tween a response variable and several explanatory factors. RSM has
been widely used as an optimization technique [22,23]. The method
can also be used as a prediction technique [24,25].

Fig. 3. Results of the tests anhydrous ethanol to 101 kPa for LFL and UFL.

Table 2
Characteristics of measurements for the lower and upper limit of anhydrous
ethanol.

Pressure Standard
deviation
[kPa]

Number of
experimental
tests

Temperature
range [°C]

Error as
ethanol
volume
[ml]

LFL 101 1,178 17 23–181 0,04
80 0,267 17 28–172 0,04
60 0,340 16 23–175 0,02
40 0,350 18 25 – 179 0,02

UFL 101 0,633 39 44–203 0,20
80 0,739 37 40–205 0,14
60 0,483 25 40–202 0,10
40 0,652 22 40–203 0,06
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3. Data and model testing

A flammability evaluation technique has been developed in which
the output variable (flammability index) is a continuous variable, not a
discrete variable (flammable or non-flammable). Thereby, a value of 0
is set to blends that have a Lower Flammability Limit (LFL) and 1 in-
dicates that they have an Upper Flammability Limit (UFL). Thus, blends
that have flammability index ranging between 0 and 1 are flammable,
whilst those with lower flammability indexes of 0 or higher than 1 are
non-flammable.

Thus, any blend can be evaluated as regards its flammability index,
which can assume positive or negative values. Therefore, flammability

indices closer to zero or one will be obtained by blends that are very
close to their LFLs or UFLs, respectively.

An algorithm has been developed herein that not only predicts
whether the blend is flammable or non-flammable, but also quantifies
how close it is to upper and lower FLs. The developed prediction al-
gorithm was based on experimental measurements.

Blends with different moisture concentrations were considered for
experimental measurements, as well as percentages of fuel volume for
different pressure and temperature conditions in the flask. The con-
sidered variables and their different evaluation ranges are presented in
Table 1.

Fig. 4. Results of the tests anhydrous ethanol to 80 kPa for LFL and UFL.
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4. Flammability apparatus and experimental procedure

A flammability heating chamber has been designed in accordance
with American regulation ASTM E-681 [7]. The chamber was heated by
using electric heating elements which are capable of increasing tem-
perature to 300 °C. It also has a thermal insulation unit and a window
for observing and recording the flame structure during each experi-
ment. For this study, a high-speed Fujifilm® FinePix HS-10 camera was
used to take pictures at high speed during each experimental test,
whose details can be seen in Fig. 1. This heating chamber is an im-
proved version of the one that had been previously designed by [12] to
test flammability limits of aeronautical ethanol.

A 20-l spherical test flask has been used. It should be noted that the
volume established by American Standard E-681 was increased because
no specification is provided as regards its use at high temperatures and
reduced pressures, which requires lower amounts of air and fuel. A
drawing of the apparatus is shown in Fig. 2. The flammability apparatus

was automated by using a Supervisory Control and Data Acquisition
(SCADA) unit. The SCADA was connected to a computer for monitoring
all variables and storing data.

The experimental procedure was in accordance with ASTM E681.
For further details about the flammability apparatus and experimental
procedure, it is recommended to read papers published in 2012 [7] and
2014 [26] and the master's degree thesis by [27].

5. Experimental tests results

Ethanol flammability limit curves were determined by experimental
results of two different alcohols, anhydrous ethanol (99.5% ethanol and
0.5% water) and hydrated ethanol (92% ethanol and 8% water). The
experiments reported herein were performed at temperatures ranging
between 20 °C and 220 °C, and pressures ranging between 40 kPa and
101.3 kPa.

Fig. 5. Results of the tests anhydrous ethanol to 60 kPa for LFL and UFL.
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5.1. Results of anhydrous ethanol experimental tests

Fig. 3 presents LFLs and UFLs experimental results at a pressure of
101 kPa, which matched theoretical calculations to determine flamm-
ability limits found in literature. Thus, it is verified the present ex-
perimental procedure and a correct operation of the Flammability Ap-
paratus. Table 2 shows the details of experimental tests and Figs. 4–6
show results at reduced pressures.

5.2. Results of hydrated ethanol experimental tests

Fig. 7 presents the LFLs and UFLs results at a pressure of 101 kPa for

hydrated ethanol, which were similar to those obtained by anhydrous
ethanol. They were compared to other pieces of data from literature.
Table 3 shows the test details and Figs. 8–10 show results at reduced
pressures.

Minimum and maximum fuel volume values were determined and
there was flame propagation in the tests flask (20.716 l). However,
these volumes must be expressed as significant values for any volume.
In order to do so, the methodology described by ASTM E681 has been
adopted, which turns maximum and minimum volume values obtained
in the heating chamber into volume percentage values that are valid for
any volume as a function of temperature. The equation to convert these
volumes is as follows:

Fig. 6. Results of the tests anhydrous ethanol to 40 kPa for LFL and UFL.
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where:

f : ethanol volume [cm3]
: ethanol density (anhydrous ethanol 0.7915 g/cm3)

MM: ethanol molecular mass (46.07 g/mol)
P: Pressure [mmHg]
T: Ethanol-air blend temperatures [K]
V: Volume [L]
P0: Standard pressure (760 mmHg)
T0: Standard temperature [273.15 K]

From the experimentally determined flammability limits,
Flammability Index valuations were attributed to each of the selected

Fig. 7. Results of the tests hydrated ethanol to 101 kPa for LFL and UFL.

Table 3
Characteristics of measurements for the lower and upper limit of hydrated
ethanol.

Pressure Standard
deviation
[kPa]

Number of
experimental
tests

Temperature
range [°C]

Error as
ethanol
volume
[ml]

LFL 101 1,1221 24 28–216 0,04
80 1,0288 19 28–212 0,04
60 1,8630 18 27–204 0,02
40 1,5904 16 32 – 205 0,02

UFL 101 0,8052 23 64–212 0,18
80 0,7844 18 51–212 0,12
60 0,6585 14 68–216 0,10
40 0,6675 19 65–219 0,06
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blends. These valuations were attributed in accordance with the fol-
lowing Equation:

=IF 1 ul a

ul ll (2)

where:

ul: Percentage of fuel volume in the upper flammability limit
ll: Percentage of fuel volume in the lower flammability limit
a: Percentage of actual fuel volume.

Four input parameters were assigned to prepare the Response
Surface: pressure (P), temperature (T), moisture concentration (% h),
and fuel volume percentage (% V). Flammability Index was established
as an output parameter.

Once flammability indexes were established for all evaluated ex-
perimental configurations, data preparation has been initiated for
generating the Response Surface. Data used in the current study com-
prise 342 experimental tests. The tests were divided into a couple of
groups: one for the response surface calculation with a total of 242
experimental tests, and another one comprising 100 tests that were
used for their respective validation.

6. Discussion

Experimental data were processed through the Kriging data inter-
polation statistical technique by using a Gaussian variogram. The
modeFRONTIER software [28] was used for data processing, which
allows generating a Java code algorithm that allowed predicting
flammability indexes for ethanol-air blends under specific conditions.

Fig. 8. Results of the tests hydrated ethanol to 80 kPa for LFL and UFL.
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Once the prediction algorithm was obtained, its validation proce-
dure was performed. For such a purpose, 342 experimental data records
were used through which a good performance of the generated algo-
rithm was evidenced. Figs. 11–12 show the experimental results of
flammability index deviations that were not considered during algo-
rithm development. These are due to predicted flammability indexes
being obtained through the prediction algorithm for upper and lower
flammability limits, respectively.

From these results, it can be observed that the average of absolute
deviation values in experimental data fitting as regards those obtained
by the prediction algorithm is lower than 0.2%, whose standard de-
viation is below 0.3% for LFLs and lower than 0.5% and 0.6% for UFLs,

respectively. These results suggest that the prediction algorithm is
significantly accurate. It is necessary to clarify that such deviations
correspond to the flammability indexes calculated by the proposed
model with respect to those expected from experimentally obtained
curves (Figs. 2–10). These deviations are quite low because the model is
sufficiently precise. In addition, flammability indexes generally assume
values between 0 and 1, whereas the data presented in Figs. 2–10 show
error bars of fuel volume (ml).

LLs and ULs mean LFLs and UFLs, respectively. Similarly, a numeric
expression included in these captions indicates the pressure at which
the tests were performed. “A” refers to blends with anhydrous ethanol
as fuel, “H” refers to those with hydrated ethanol, “w” refers to

Fig. 9. Results of the tests hydrated s ethanol to 60 kPa for LFL and UFL.
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experimental tests in which there was no flame propagation, “p” to
experimental tests that presented flame propagation, and “k” to
flammability limits determined through the prediction algorithm that
has been developed based on the Kriging methodology. This codifica-
tion has been detailed in Fig. 13.

After validating the flammability prediction algorithm, flamm-
ability limit curves were obtained from the data provided by the al-
gorithm, whose pressures were set at 40 kPa, 60 kPa, 80 kPa, and
101 kPa, and anhydrous and hydrated ethanol blends. These curves are
shown from Figs. 14–21, along with experimental data for different
pressures inside the tests flask tests. Experimental results for blends
which presented flammable or non-flammable conditions are in red
and blue, respectively, in the aforementioned figures. In addition,
the experimental configurations that presented flammability condition

close to LFLs are represented by a diamond, and those that
presented a flammability condition close to UFLs are represented by a
square.

According to these results, it can be concluded that the proposed
algorithm can adequately predict the flammability limit of blends that
exhibit variations in operating pressure and temperature, the percen-
tage of ethanol volume in the blend, and moisture concentration in
ethanol within the ranges considered herein for each analyzed para-
meter.

From these results, it can be observed that variations in pressure,
moisture concentration in ethanol and percentage of fuel volume for
ethanol-air blends do not present significant differences regarding LFLs.
However, there are rather marked differences in UFLs, especially at
high temperatures, which can be observed in Figs. 22 and 23 in which

Fig. 10. Results of the tests hydrated ethanol to 40 kPa for LFL and UFL.
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sets of flammability limits for anhydrous and hydrated ethanol blends
are shown, respectively.

Moreover, these results clearly reveal the manner through which
flammability limits of ethanol-air blends are slightly reduced when
moisture concentration in the fuel increases. This difference is shown in
Fig. 24, where flammability limits of anhydrous ethanol-air and hy-

drated ethanol-air blends are compared. Moisture reduces the flam-
mable area of ethanol-air blends, i.e. anhydrous ethanol is more flam-
mable. The greatest differences are observed for UFLs, thus, in addition

Fig. 11. Deviation of flammability values used in validation of the prediction
algorithm in the lower limit.

Fig. 12. Deviation of flammability values used in validation of the prediction
algorithm in the upper limit.

Fig. 13. Codification employed.
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Fig. 14. Flammability limits at 40 kPa – anhydrous ethanol.
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Fig. 15. Flammability limits at 60 kPa – anhydrous ethanol.
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Fig. 17. Flammability limits at 101 kPa – anhydrous ethanol.
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Fig. 16. Flammability limits at 80 kPa – anhydrous ethanol.
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Fig. 18. Flammability limits at 40 kPa – hydrated ethanol.
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Fig. 19. Flammability limits at 60 kPa – hydrated ethanol.

0 5 10 15 20 25 30 35
Fuel volume [%]

20

60

100

140

180

220

Te
m

pe
ra

ur
e 

[C
]

LL80Hw
LL80Hp
LL80Hk
UL80Hw
UL80Hp
UL80Hk

Fig. 20. Flammability limits at 80 kPa – hydrated ethanol.
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Fig. 21. Flammability limits at 101 kPa – hydrated ethanol.
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to being more sensitive to temperature, it is also very sensitive to water
content in ethanol. This effect was expected since water vapor con-
tained in the fuel is inert, thence narrowing the flammability zone.

In addition, the algorithm developed herein allows calculating re-
sponse surfaces, in which two input parameters can be compared as a
function of flammability. Figs. 25 and 26 show the response surfaces
that link pressure and percentage of fuel volume to anhydrous ethanol-
air and hydrated ethanol-air blends, respectively, at a temperature of
40 °C. In these response surfaces, an interval can be seen in which
ethanol-air blends are flammable (region in red) and regions where
they are non-flammable, either for presenting a poor blend (light blue
zone) or a rich blend (dark blue zone).

Finally, It should be noted that although the curvature shape in the

graphs showing Volume (ml) as a function of temperature (°C), espe-
cially in those showing upper flammability limit curves (e.g. Fig. 4),
tends to decrease, and then the fuel volume increases at 100 °C with the
same experimental data, but this time in a graph showing fuel volume

Fig. 22. Flammability limits of anhydrous ethanol-air mixtures, predicted by
the developed algorithm.

Fig. 23. Flammability limits of hydrated ethanol-air mixtures, predicted by the
developed algorithm.
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Fig. 24. Comparison of flammability limits for mixtures of anhydrous ethanol-
air and hydrated ethanol-air, pressure of 101.3 kPa.

Fig. 25. Response surface to flammability index of anhydrous ethanol at 40 °C.
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(%) as a function of temperature (Fig. 16), the UFL curve trend is in
agreement with data found in literature, once it is observed a constant
increase in flammability limit as temperature rises. These graphs are
fundamental since they do not take into account a fixed volume, but a
generalization of any volume or space that may be occupied by a fuel. A
similar behavior occurs in the rest of the figures.

7. Conclusion

This paper has proposed a technique to estimate flammability limits
of ethanol-air fuel blends as a function of flammability index, which
allows verifying not only whether the a blend is flammable or non-
flammable, but also revealing how close it is to its flammability limits.

The presented model allows determining upper and lower flamm-
ability limits for air-ethanol blends. This prediction is based on estab-
lishing a flammability index that is obtained from pressure parameters
in the test flask, air-ethanol blend temperature, fuel ratio in it and
moisture concentration in ethanol. This index is established through
interpolation techniques from experimental measurements. Prediction
results from the model were compared with experimental measure-
ments. The results lead to the conclusion that the developed model
provides a very good approximation of required flammability limits.

The designed algorithm predicted the flammability condition of
ethanol-air blends at temperatures ranging between 20 °C and 210 °C,
pressure between 40 kPa and 101.3 kPa, ethanol moisture concentra-
tion at 0.5% and 8%, and ethanol volume percentages between 1% and
35%.

The algorithm is a valid tool to determine the flammability

condition of ethanol-air blends due to achieving an amazing degree of
accuracy and efficiency.
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