
Dual descriptions of spin-two massive particles inD ¼ 2þ 1 via master actions

D. Dalmazi* and Elias L. Mendonça†
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In the first part of this work we show the decoupling (up to contact terms) of redundant degrees of

freedom which appear in the covariant description of spin-two massive particles in D ¼ 2þ 1. We make

use of a master action which interpolates, without solving any constraints, between a first-, second-, and

third-order (in derivatives) self-dual model. An explicit dual map between those models is derived. In our

approach the absence of ghosts in the third-order self-dual model, which corresponds to a quadratic

truncation of topologically massive gravity, is due to the triviality (no particle content) of the Einstein-

Hilbert action in D ¼ 2þ 1. In the second part of the work, also in D ¼ 2þ 1, we prove the quantum

equivalence of the gauge invariant sector of a couple of self-dual models of opposite helicities (þ 2 and

�2) and masses mþ and m� to a generalized self-dual model which contains a quadratic Einstein-Hilbert

action, a Chern-Simons term of first order, and a Fierz-Pauli mass term. The use of a first-order Chern-

Simons term instead of a third-order one avoids conflicts with the sign of the Einstein-Hilbert action.

DOI: 10.1103/PhysRevD.79.045025 PACS numbers: 11.10.Kk

I. INTRODUCTION

In the last years there has been quite intense activity in
the subject of higher spin theories in different dimensions
and their dual formulations; see, for instance, [1–5] and
references therein. One of the difficulties of a covariant
description of higher spin fields is the amount of redundant
degrees of freedom present in the higher rank tensor fields.
This is a severe difficulty in constructing interacting theo-
ries for such fields; see comments in [3,4]. In the first part
of our work (Sec. II) we address the issue of spurious
degrees of freedom in D ¼ 2þ 1 for massive fields of
helicity �2. We show how duality can help us to prove
the quantum decoupling of redundant degrees of freedom
at the quadratic level (free theories). Our master action
approach also leads us to a better understanding of the
differences with the spin-one case where there are only
first-order and second-order (in derivatives) self-dual mod-
els, unlike the spin-two case where we also have a third-
order (ghost-free) self-dual model. In particular, based on
the local symmetries of the dual models, we also explain
why we do not expect a fourth-order (or higher) self-dual
model for spin two and why we do not have a third-order
(or higher) self-dual model for the spin-one case. Our
approach makes it clear that the absence of ghosts in the
third-order self-dual model is a consequence of the non-
propagating nature of the Einstein-Hilbert (EH) action in
D ¼ 2þ 1.

In the second part of this work (Sec. III) we show that
there exists a self-consistent quantum description of a
couple of massive states of opposite helicities (þ 2 and
�2) and different masses in general, by means of only one
rank-two tensor field which we call a generalized self-dual
(GSD) field in analogy with the spin-one case treated in

[6,7]. We avoid the conflicts found in [8] with the sign of
the Einstein-Hilbert term by working with a Chern-Simons
(CS) term of first order instead of the gravitational Chern-
Simons term of third order of [9]. The particle content of
the GSD model is disentangled by showing its dual equiva-
lence to the gauge invariant sector of a couple of non-
interacting second-order self-dual models of opposite
helicities.

II. FIRST, SECOND, AND THIRD-ORDER SELF-
DUAL MODELS AND THEIR DUAL MAPS

Our starting point is the first-order self-dual model
suggested in [10] which is the helicity þ2 analogue of
the helicity þ1 self-dual model of [11],

Sð1ÞSD ¼
Z

d3x

�
m

2
����f�

�@�f�� þm2

2
ðf2 � f��f

��Þ
�
;

(1)

where f � ���f��. The metric is flat: ��� ¼
diagð�;þ;þÞ. The upper index in Sð1ÞSD indicates that we

have a first-order model in the derivatives. In most of this
work we use second rank tensor fields, like f�� in (1), with

no symmetry in their indices. Whenever symmetric and
antisymmetric combinations show up, they will be de-
noted, respectively, by fð��Þ � ðf�� þ f��Þ=2 and

f½��� � ðf�� � f��Þ=2. Replacing m by �m in Sð1ÞSD, we

change the particle’s helicity fromþ2 to�2. The first term
in (1) reminds us of a spin-one topological Chern-Simons
term which will henceforth be called a Chern-Simons term
of first order (CS1), to be distinguished from another (third-
order) Chern-Simons term which appears later. The second
term in (1) is the Fierz-Pauli (FP) mass term [12] which is
the spin-two analogue of a spin-one Proca mass term. The
FP term breaks the local invariance �f�� ¼ @�	� of the

CS1 term.
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The equations of motion of (1),

��
��@�f�� ¼ mðf�� � ���fÞ; (2)

imply that f�� is traceless, symmetric, and transverse, i.e.,

f ¼ 0; (3)

f½��� ¼ 0; (4)

@�f�� ¼ 0 ¼ @�f��: (5)

Furthermore, it follows that f�� satisfies the

Klein-Gordon equation ðh�m2Þf�� ¼ 0 and the

helicity equation ðJ�P� þ 2mÞ��
�f
� ¼ 0, with

ð2mÞ��
� ¼ mð��
��� þ �����
Þ, and (see [4])
the quantities ðJ�Þ��
�¼ ið��
����þ��
����þ
������
þ������
Þ=2 satisfy the 2þ 1 Lorentz algebra.
In summary, all necessary equations to describe a helicity
þ2 massive particle in D ¼ 2þ 1 are satisfied at the
classical level.

Next we combine the works [10,13] into one master
action which takes us from the first-order self-dual model
(1) to its second and third-order versions entirely within the
path integral framework with no need of solving any con-
straint equation as in [10] or introducing any explicit gauge
condition. Before we proceed, in order to keep the analogy
with the spin-one case as close as possible and to avoid the
profusion of indices, we use the shorthand notation

Z
f � df �

Z
d3x��

��f��@�f��; (6)

Z
ðf2ÞFP �

Z
d3xðf2 � f��f

��Þ: (7)

In the master action approach an important role will be
played by the EH term. If we expand in the dreibein e�� ¼
��� þ h�� and keep only quadratic terms in the fluctua-

tions, the EH action can be written [13]

1

2

Z
d3xð ffiffiffiffiffiffiffi�g

p
RÞhh ¼

Z
d3x

����h�
�@����ðhÞ
4

¼ 1

4

Z
h � d�ðhÞ; (8)

where1

��
�ðhÞ � ���
½@�ðh
� þ h�
Þ � @�h
��: (9)

As explained in [7,14] with an explicit example, the
existence of a master action does not guarantee a priori
spectrum equivalence of the interpolated dual theories. It is
crucial that the terms which mix the fields of the dual
theories have no propagating degree of freedom like the
spin-one CS term used in [15] or the BF-type mixing terms

of [16]. Based on the works [10,13] we suggest the follow-
ing master action:

SSM ¼ m

2

Z
f � dfþm2

2

Z
ðf2ÞFP

�m

2

Z
ðf� AÞ � dðf� AÞ

� a
Z
ðh� AÞ � d�ðh� AÞ: (10)

We have introduced two second rank tensor fields A��

and h�� with no symmetry in their indices. The upper

index in SSM stands for a singlet (a parity singlet of helicity
þ2). The coefficient in front of the third term of (10) is
such that the quadratic term of SSM in f�� has no deriva-

tives, which is important for deriving dual theories which
are local. The constant ‘‘a’’ will be fixed later on for an
analogous reason. If a ¼ 0 we recover the intermediate
master action of [10]. Let us introduce sources j�� and

define the generating function:

WS½J�¼
Z
DA��Dh��Df��expi

�
SSMþ

Z
d3xf��j

��

�
:

(11)

After the trivial shift h�� ! h�� þ A�� followed by

A�� ! A�� þ f��, the last two terms of (10) decouple,

and since they have no particle content it is clear that SSM is

equivalent to Sð1ÞSD and therefore describes a parity singlet of

helicityþ2. After those shifts and integrating over h�� and

A��, we derive, up to an overall constant,

WS½J� ¼
Z

Df�� expi

�
Sð1ÞSD þ

Z
d3xf��j

��

�
: (12)

On the other hand, since the linear term in the fields f��
in the exponent in (11) is f��U

�� with U�� �
m����@�A�

� þ j��, after the shift f�� ! f�� þ
ð���U

�
� � 2U��Þ=ð2m2Þ we decouple f�� completely.

After integrating over f�� we obtain, up to an overall

constant,

WS½J� ¼
Z

DA��Dh�� expiSI½j�; (13)

where

SI½j� ¼
Z �

A � d�ðAÞ
4

�m

2
A � dA

�

� a
Z
ðh� AÞ � d�ðh� AÞ

þ
Z

d3x

�
j��F��ðAÞ þ

j��j��

2m2
� ðj��Þ2

4m2

�
: (14)

The sources are now coupled to the gauge invariant
combination:1Our definition of��

�ðhÞ differs from [13] by an overall sign.
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F��ðAÞ � T��ðAÞ �
T�

�ðAÞ
2

��� (15)

where T��ðAÞ � ð1mÞ����@�A�� is invariant under the

gauge transformations �A�� ¼ @�	�. The shift h�� !
h�� þ A�� in (14) decouples h�� for arbitrary values of

the constant ‘‘a,’’ which has played no role so far.
Integrating h��, up to an overall constant again, we obtain

WS½J� ¼
Z

DA��

� expi

�
Sð2ÞSDðAÞ þ

Z
d3x

�
j��F��ðAÞ þ

j��j��

2m2

� ðj��Þ2
4m2

��
; (16)

where the second-order self-dual model is given by

Sð2ÞSD ¼
Z �

A � d�ðAÞ
4

�m

2
A � dA

�
: (17)

The model Sð2ÞSD has appeared before in [10,13]. It looks

very similar to the spin-one Maxwell-Chern-Simons

(MCS) theory of [9]. In particular, Sð2ÞSD is a gauge theory

invariant under �A�� ¼ @�	�. The first term in (17) is the

analogue of the Maxwell term in the MCS theory and
corresponds exactly to the quadratic approximation of the
Einstein-Hilbert action [see (8)], with its usual sign.

From the classical point of view, the equations of motion

of Sð2ÞSD can be cast in the same self-dual form (2) with the

identification f�� $ F��ðAÞ. Therefore, it is clear that Sð2ÞSD

is a perfectly acceptable classical description of such a
particle.

At the quantum level, deriving (12) and (16) with respect
to the sources we demonstrate the following equivalence of
correlation functions:

hf�1�1
ðx1Þ � � � f�N�N

ðxNÞiSð1Þ
SD

¼ hF�1�1
½Aðx1Þ� � � �F�N�N

½AðxNÞ�iSð2Þ
SD

þ contact terms:

(18)

The contact terms appear due to the quadratic terms in
the sources in (16). In conclusion, we have the dual map
below at the classical and quantum levels,

f�� $ F��ðAÞ ¼ T��ðAÞ � T
�
� ðAÞ
2

���: (19)

Because of the gauge invariance of T��ðAÞ ¼
��

��@�A��=m our dual map is gauge invariant as expected

since Sð1ÞSD is not a gauge theory. The map (19) is similar to

the spin-one map f� $ ����@
�A�=m between the self-

dual model of [11] and the MCS theory of [9].

Next we show that Sð1ÞSD is also dual to a third-order self-

dual model. Neglecting surface terms, after some integra-

tion by parts it is easy to prove the identities

Z
h � d�ðAÞ ¼

Z
A � d�ðhÞ ¼

Z
�ðhÞ � dA: (20)

By using those identities in (14) and fixing a ¼ 1=4, we
can cancel the second-order term

R
A � d�ðAÞ=4, and the

intermediate action (14) can be written as

SI½j� ¼ �m

2

Z �
A��ðhÞ

2m

�
� d

�
A��ðhÞ

2m

�

þ 1

8m

Z
�ðhÞ � d�ðhÞ � 1

4

Z
h � d�ðhÞ

þ
Z

d3x

�
j��F��ðAÞ þ

j��j��

2m2
� ðj��Þ2

4m2

�
: (21)

It is clear that the shift A�� ! A�� þ���ðhÞ=2m will

decouple A�� from h�� and produce the third-order actionR
�d� out of the second-order theory (14). Another, less

obvious, shift A�� ! A�� þ ðj�� � ���j
�
�=2Þ=m2 decou-

ples A�� completely and gives rise to the CS1 term

�ðm=2ÞRA � dA with no particle content. After integrat-

ing over A�� we derive from (13) and (21), up to an overall

constant,

WS½J� ¼
Z

Dh��

� expi

�
Sð3ÞSDðhÞ þ

Z
d3x

�
j��F��

�
�

2m

�

þOðj2Þ
��
; (22)

where Oðj2Þ stands for quadratic terms in the sources
which lead only to contact terms in the correlation func-
tions and therefore do not need to be specified. From (9)
and (15) we have

F��

�
�

2m

�
¼ T��

�
�

2m

�
� T�

�ð�2mÞ
2

���; (23)

T��

�
�

2m

�
¼ ����@���

�

2m2
¼ �E�
E��hð
�Þ

m2
; (24)

with E�� � ����@�. The third-order self-dual model

Sð3ÞSDðhÞ is given by

Sð3ÞSDðhÞ ¼
1

8m

Z
�ðhÞ � d�ðhÞ � 1

4

Z
h � d�ðhÞ

¼
Z

d3x

�
1

2m
hð��Þð���h� @�@�ÞE��hð��Þ

� 1

2
hð��ÞE��E��hð��Þ

�
: (25)

The first term in Sð3ÞSDðhÞ is the quadratic approximation

in the fluctuations of the dreibein e�� ¼ ��� þ h�� of a

gravitational Chern-Simons term (see [9,13]), while the
second one is the EH term at the same approximation; [see
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(8)]. Both terms form the quadratic approximation for the
so-called topologically massive gravity of [9]. The action

Sð3ÞSD is invariant under the local transformations �h�� ¼
@�	� þ ���
�


. Notice that the sign of the EH term is not

the expected one. By construction, in passing from Sð2ÞSDðhÞ
to Sð3ÞSDðhÞ there is a sign inversion. The unexpected sign, as
explained in [9], is in fact necessary for the absence of
ghosts, which is a surprising feature of the higher-order

theory Sð3ÞSDðhÞ that we now understand from another point

of view, since we have shown directly that Sð3ÞSDðhÞ can be

derived from the first-order ghost-free theory Sð1ÞSDðhÞ by the
addition of two extra terms (mixing terms) [see (10)] with
no particle content. Now it is clear why we do not have a
third-order self-dual model in the spin-one case; the point

is that when we derive Sð3ÞSDðhÞ from a first-order theory a

second-order mixing term is necessary. We have used the
quadratic Einstein-Hilbert action as a mixing term since it
has no particle content. However, its spin-one analogue is
the Maxwell action which contains a scalar massless par-
ticle in the spectrum and cannot be used to mix dual fields
without leading to a spectrum mismatch between the dual
theories.

At the classical level, the equations of motion �Sð3ÞSD ¼ 0
can be written in the first-order self-dual form (2) with the

identification f�� $ F��ð�2mÞ. Consequently, Sð3ÞSD classi-

cally describes a parity singlet of helicity þ2 just like

Sð2ÞSD or Sð1ÞSD.

From (12) and (22) we deduce

hf�1�1
ðx1Þ���f�N�N

ðxNÞiSð1Þ
SD

¼
�
F�1�1

�
�ðx1Þ
2m

�
���F�N�N

�
�ðxNÞ
2m

�	
Sð3Þ
SD

þcontact terms:

(26)

It is remarkable that now in the Sð3ÞSDðhÞ theory we have

T��ð�2mÞ ¼ T��ð�2mÞ [see (24)], and consequently

F��ð�2mÞ ¼ F��ð�2mÞ. Therefore the dual map f�� $
F��ð�2mÞ that we read from (26) now automatically assures

the vanishing of correlation functions of the antisymmetric
combinations f½���, up to contact terms, which is not

obvious either in Sð1ÞSDðfÞ or in Sð2ÞSDðAÞ. This is a typical

advantage of having dual formulations of the same theory.
The decoupling of the trace f ¼ ���f�� is not obvious

in any of the three self-dual formulations given here. In
what follows we take advantage of the second-order for-
mulation to prove it. First, suppose we had defined the

sources from the very beginning as j�� � ���� þ j��S þ
j��A , such that f��j

�� ¼ f�þ j��S fð��Þ þ j��A f½���
where j��S ¼ j��S and j��A ¼ �j��A . Back in (16) and using

(15) we can write down the action in the exponent of (16)
as follows:

S½j� ¼
Z

d3x

�
�A��E

��E�
ðA
� þ A�
Þ
4

�m2
A��T

��ðAÞ
2

þ j��
A T��ðAÞ þ j��

S T��ðAÞ

� ½�þ ðjSÞ���T�
�

2
þOðj2��Þ

�
: (27)

Since the first term in (27), which is the quadratic
Einstein-Hilbert action, only depends on Að��Þ it is clear
that we get rid of j

��
A T��ðAÞ through the shift A�� !

A�� þ j��
A =m2. So we can see the decoupling of f½���

directly in the Sð2ÞSD formulation. After A�� ! A�� þ
ðE��

m � ���Þ �
2m2 we cancel out ��T�

�=2 in (27).

Consequently, all correlation functions of f½��� or the trace
f will vanish, up to contact terms, in agreement with the
classical results (3) and (4).
Regarding the transverse condition (5), from the trace of

the dual map (19) we have the correspondence f $
�T

�
� ðAÞ=2. So, the decoupling of the trace f implies that

correlation functions in the Sð2ÞSDðAÞ theory involving T�
� ðAÞ

must vanish (up to contact terms). Classically, T�
� ðAÞ ¼ 0

follows from the equations of motion of Sð2ÞSDðAÞ. Thus, we
can reduce the dual map (19) to f�� $ T��ðAÞ. Because of
the trivial (nondynamical) identity @�T

�� ¼ 0 it follows

that @�f
�� ¼ 0, and since f½��� decouples we have

@�f
�� ¼ 0 ¼ @�f

�� ¼ 0 inside correlation functions up
to contact terms. Therefore all constraints (3)–(5) are
satisfied. We can use the dual maps between correlation
functions (18) and (26) and the detailed studies (including
the pole structure of the propagator) made in [9] (see also

[10]) to finally establish that the three models Sð1ÞSDðfÞ,
Sð2ÞSDðAÞ, and Sð3ÞSDðhÞ correctly describe a parity singlet of

helicity þ2 and mass m.
The fact that (4) and (5) are consequences of trivial

(nondynamical) identities is relevant for a consistent cou-
pling to other fields. In the spin-one case the transverse
condition on the self-dual field @�f

� ¼ 0 is traded, in the

Maxwell-Chern-Simons theory, in the Bianchi identity
@�F

�ðAÞ ¼ @�ð����@�A�Þ ¼ 0. Since this is trivially sat-

isfied it will hold also after coupling to other fields. In
particular, in [17], we have coupled the self-dual model to
charged scalar fields by using an arbitrary constant ‘‘a’’ as
follows: @��

�@�� ! ðD��Þ�D��þ e2ða� 1Þf2���,

where ‘‘e’’ is the charge and D�� ¼ ð@� þ ief�Þ�. We

have shown in [17] that the Bianchi identity @�F
�ðAÞ ¼ 0

gives rise via a dual map to the constraint @�f½m2 þ
2e2ða� 1Þ����f�g ¼ 0. Although we only have a ‘‘mini-
mal coupling’’ for a ¼ 1, the correct counting of degrees
of freedom is guaranteed for any value of ‘‘a.’’ In the spin-
two case the traceless condition f ¼ 0 does not correspond
to a trivial identity in the dual gauge theories. Therefore we
expect restrictions on the possible couplings of the spin-
two self-dual model to other fields.
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Concerning the local symmetries of the models Sð2ÞSD and

Sð3ÞSD, a comment is in order. Namely, the first term in Sð1ÞSD is

invariant under the local transformations �	f�� ¼ @�	�.

This symmetry is broken by the Fierz-Pauli mass term.

However, in the dual theory Sð2ÞSD such symmetry is restored.

Analogously, the first term in Sð2ÞSD is invariant under anti-

symmetric local shifts ��A�� ¼ ���, where ��� ¼
����, and that symmetry is broken by the mass term of

Sð2ÞSD (the CS1 term). Once again the symmetry is restored in

Sð3ÞSD, which depends only on hð��Þ. Since both the quadratic
Einstein-Hilbert action and the mass term (quadratic third-

order Chern-Simons term) of Sð3ÞSD are invariant under the

same set of local symmetries, there will be no local sym-
metry to be restored by a higher-order (fourth) self-dual

model. So we claim that Sð3ÞSD is the highest-order spin-two

self-dual model. Likewise, in the spin-one case both the
Maxwell and Chern-Simons terms are invariant under the
same gauge symmetry and we have no third-order self-dual
model of spin one.

III. GENERALIZED SELF-DUAL MODEL OF SPIN
TWO AND ITS DUAL

In the last section we learned that there are at least three
different consistent ways of giving mass to a parity singlet
of spin two in D ¼ 2þ 1 without using extra fields. We
can use the Fierz-Pauli mass term, the CS1 term, or the
Chern-Simons term of third order which is a quadratic
truncation of a gravitational Chern-Simons term; see (1),
(17), and (25), respectively. In the spin-one case (parity
singlet) we have two possible mass terms, i.e., the first-
order Chern-Simons term and the Proca term which ap-
pears in the first-order self-dual model of [11]. Both terms
can coexist in a generalized self-dual model (Maxwell-
Chern-Simons-Proca theory) which contains two massive
parity singlets of spin one in the spectrum. It is natural2 to
ask whether we could combine different mass terms also in
the spin-two case. Indeed, this question has been addressed

in [8]. As we have seen here, in passing from Sð2ÞSD to Sð3ÞSD the

usual sign of the Einstein-Hilbert term must be reversed,
which poses a problem when both the first and the third-
order Chern-Simons terms are present since they require
opposite signs for the Einstein-Hilbert action. It is also
known that in the usual FP massive gravity the sign of the
Einstein-Hilbert theory is the usual one. In fact, due to this
problem the authors of [8] have concluded that the theory
consisting of an Einstein-Hilbert action plus a topological
Chern-Simons term of third order and a FP mass term does
not have a physical spectrum. On the other hand, we could
have two massive physical particles in the spectrum by
combining both the first-order CS term and the FP mass

term. In analogy with the spin-one case [7] we define a
generalized self-dual model of spin two by adding a qua-

dratic Einstein-Hilbert term to the Sð1ÞSD self-dual model

defined with arbitrary coefficients a0; a1:

SGSD ¼
Z �

a0
2
ðf2ÞFP þ a1

2
f � dfþ f � d�ðfÞ

4

�
: (28)

We could ask, what is the gauge theory dual to SGSD
which generalizes Sð2ÞSD? Following [7], in order to avoid

ghosts, it is appropriate to introduce auxiliary fields (���)

and rewrite the quadratic EH term of (28) in a first-order
form with the help of a Fierz-Pauli mass term. Next we
add two terms, with no particle content, to mix the initial

fields ðf��; ���Þ with the new dual fields ð ~A��; ~B��Þ.
Introducing a source term we have the generating function

W½j� ¼
Z

D ~AD ~BDfD� expiSMðjÞ; (29)

where the source-dependent master action is given by

SMðjÞ ¼ a0
2

Z
ðf2ÞFP þ a1

2

Z
f � dfþ

Z
d3xj��f��

þ 1

2

Z
ð�2ÞFP þ

Z
� � df�

Z
ð�� ~BÞ � dðf� ~AÞ

� a1
2

Z
ðf� ~AÞ � dðf� ~AÞ: (30)

After the shifts ~B�� ! ~B�� þ ��� and ~A�� ! ~A�� þ
f�� in SM, the last two terms decouple, and since they have

no propagating mode, the particle content of SM is the same
as that of the generalized self-dual model SGSD. Integrating

over ~A, ~B, and ���, we obtain the generating function of

the GSD model up to an overall constant:

W½j� ¼
Z

Dfei½SGSDðfÞþ
R

d3xj��f���: (31)

On the other hand, we can write

SMðjÞ ¼ �
Z

~B � d ~A� a1
2

Z
~A � d ~Aþ

Z
d3xj��f��

þ 1

2

Z
ð�2ÞFP þ

Z
� � d ~Aþ a0

2

Z
ðf2ÞFP

þ
Z

f � dð ~Bþ a1 ~AÞ: (32)

The integrals
R
D� and

R
Df will produce two

Einstein-Hilbert terms quadratic in the fields ~A�� and
~B��, including a mixing term involving both fields. A field

redefinition can decouple ~A�� from ~B��. Guided by the

spin-one case [7] we use the convenient notation

a0 ¼ mþm�; a1 ¼ mþ �m�: (33)2In a more general situation we might try to combine the three
different spin-two mass terms altogether [18].
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After the redefinitions

~A�� ¼
ffiffiffiffiffiffiffiffi
mþ

p
A�� � ffiffiffiffiffiffiffiffi

m�
p

B��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ þm�

p ; (34)

~B�� ¼ �m3=2
þ A�� þm3=2� B��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mþ þm�
p ; (35)

we deduce, up to an overall constant,

W½j� ¼
Z

DADBeiS½j;mþ;m�� (36)

where

S½j;mþ; m�� ¼ Sð2ÞSDðA;mþÞ þ Sð2ÞSDðB;�m�Þ

þ
Z

d3x

�
j��F��ðA; BÞ þ j��j��

2mþm�

� j��j��
4mþm�

�
: (37)

The tensor F��ðA; BÞ is invariant under independent
gauge transformations �A�� ¼ @�	� and �B�� ¼ @���,

explicitly:

F��ðA; BÞ ¼ ���
@
�C


� � ���

2
��
�@�C
�; (38)

C�� ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ þm�

p
�
A��ffiffiffiffiffiffiffiffi
mþ

p þ B��ffiffiffiffiffiffiffiffi
m�

p
�
: (39)

For mþ ¼ m� parity symmetry is restored in both (28)

and (37). Using the physical interpretation of Sð2ÞSD from the

last section, it is now clear that SGSD describes two massive
particles of masses mþ and m� and helicities þ2 and �2.
Comparing correlation functions from (31) and (36) we
derive

hf�1�1
ðx1Þ � � � f�N�N

ðxNÞiSGSDðf;mþ;m�Þ
¼ hF�1�1

½Cðx1Þ� � � �F�N�N ½CðxNÞ�iSð2Þ
SD
ðA;mþÞþSð2Þ

SD
ðB;�m�Þ

þ contact terms: (40)

So we have the map f�� $ F��ðCÞ. For a complete

proof of equivalence between SGSDðf;mþ; m�Þ and the

gauge invariant sector of Sð2ÞSDðA;mþÞ þ Sð2ÞSDðB;�m�Þ, it
is rather puzzling that f�� is mapped into a gauge invariant

function of one specific linear combination of the fields
A�� and B��, while on the other side we have two inde-

pendent and local gauge invariant objects, namely,
T��ðAÞ ¼ ��

��@�A��=m and T��ðBÞ. We should be able

to compute any correlation function of T��ðAÞ and T��ðBÞ
in terms of the generalized self-dual field f��. Indeed, as in

the spin-one case [7], this is possible, as we show next. We
first suppress the source term f��j

�� in (30) and add

sources for T��ðAÞ and T��ðBÞ. So we define the generat-

ing function

~W½~jþ; ~j�� ¼
Z

DfD�D ~AD ~B expi~SM½~jþ; ~j�� (41)

where

~SM½~jþ; ~j�� ¼ SMðj ¼ 0Þ
þ

Z
d3x½~j��

þ T��ð ~AÞ þ ~j��� T��ð ~BÞ�: (42)

We have introduced the sources

~jþ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ þm�

p
�
m�jþffiffiffiffiffiffiffiffi
mþ

p �mþj�ffiffiffiffiffiffiffiffi
m�

p
�
; (43)

~j� � � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ þm�

p
�

jþffiffiffiffiffiffiffiffi
mþ

p þ j�ffiffiffiffiffiffiffiffi
m�

p
�
; (44)

in such a way that, after integrating over f�� and �ab and

redefining the fields according to (34) and (35), we obtain,
up to an overall constant,

W½jþ; j�� ¼ ~W½~jþ; ~j��

¼
Z

DfD�DADB expi

�
Sð2ÞSDðA;mþÞ

þ Sð2ÞSDðB;�m�Þ þ
Z

d3x½j��
þ T��ðAÞ

þ j��� T��ðBÞ�
�
: (45)

On the other hand, it is not difficult to convince our-

selves that after some shifts of ~B�� and ~A�� in (41), we can

decouple those fields completely. Their integration leads to
a constant. By further integrating over the auxiliary fields
��� we obtain from (41), up to an overall constant, the dual

version of (45),

W½jþ; j�� ¼ ~W½~jþ; ~j��

¼
Z

Df expi

�
SGSDðfÞ

þ
Z

d3x½j��þ D��
��ðx;�m�Þf��

þ j��� D��
��ðx;mþÞf��� þOðj2Þ

�
(46)

whereOðj2Þ stand for quadratic terms in the sources jþ and
j�. We have introduced the differential operator

D����ðx;mÞ ¼ 1

jmj ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ þm�

p ½mE
��
x ��� � E

�ð�
x E�Þ�

x �:
(47)

Note that (45) and (46) are both symmetric under
ðmþ; m�; jþ; j�Þ ! ð�m�;�mþ; j�; jþÞ as expected.
Correlation functions of T��ðAÞ and T��ðBÞ can now be

calculated from the GSD model. For instance, from (45)
and (46) we derive
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hT�1�1½Aðx1Þ� � � �T�N�N ½AðxNÞ�iSð2Þ
SD
ðA;mþÞþSð2Þ

SD
ðB;�m�Þ

¼ D�1�1�1�1ðx1; mþÞ � � �D�N�N�N�N ðxN;mþÞ
� hf�1�1

ðx1Þ � � � f�N�N
ðxNÞiSGSD þ contact terms:

(48)

Of course, we can also calculate correlation functions of
T��ðBÞ, and mixed correlation functions involving both

T��ðAÞ and T��ðBÞ from the GSDmodel (28). So we prove

the quantum equivalence between the gauge invariant sec-

tor of Sð2ÞSDðA;mþÞ þ Sð2ÞSDðB;�m�Þ and the GSD model, up

to contact terms. The classical equivalence between those
models can also be established in a fashion analogous to
what has been done in the spin-one case in [7].

IV. CONCLUSION

We have shown in the master action approach how
duality can help us to prove the decoupling of redundant
degrees of freedom at the quantum level. We have com-
pared correlation functions and derived a dual map be-
tween the first-, second-, and third-order self-dual models
which describe parity singlets of helicity þ2 (or �2) in
D ¼ 2þ 1. In particular, the decoupling of the antisym-
metric combinations f½��� and the transverse conditions

@�f
�� ¼ 0 ¼ @�f

�� have been shown to be related

via dual maps to the trivial (nondynamical) iden-
tities T��ð�Þ � T��ð�Þ ¼ 0 and @�T

��ð�Þ ¼
@�ð���
@��


�Þ ¼ 0, respectively, which indicates that

those constraints will not be obstacles for the inclusion of
interactions, contrary to the traceless condition f

�
� ¼ 0.

Furthermore, we have seen that the spectrum equivalence
of the three self-dual models follows from the nonpropa-
gating (pure gauge) nature of the mixing terms in the
master action, namely, the Chern-Simons term of first order
and the Einstein-Hilbert action. Based on the local sym-

metries of the self-dual models we have argued that we
should not expect a fourth- or higher-order self-dual model
of spin two and that there is no third-order (or higher) self-
dual model in the spin-one case.
In Sec. III we defined a GSD model by adding a qua-

dratic Einstein-Hilbert term to the first-order self-dual
model of [10] and showed its equivalence to the gauge
invariant sector of a couple of noninteracting free particles
of opposite helicities (þ 2 and �2) and different masses,

i.e., Sð2ÞSDðA;mþÞ þ Sð2ÞSDðB;�m�Þ. This generalizes pre-

vious works [19–21]. We have identified the gauge invari-
ant field of the GSD model with a gauge invariant function
of one specific linear combination of the opposite helicity
gauge fields; see (39). In the opposite direction we have
also shown how to compute correlation functions of gauge

invariant objects of Sð2ÞSDðA;mþÞ þ Sð2ÞSDðB;�m�Þ from the

dual GSD theory. No specific gauge condition has been
used.
The decoupling of spurious degrees of freedom after the

inclusion of interactions is under investigation. It is also of
interest to formulate consistent self-dual models for higher
spin (s � 3) massive particles in D ¼ 2þ 1 since the
cases s ¼ 1 and s ¼ 2 seem to indicate, as we have seen
here, a connection between topological actions and self-
dual models. Finally, since there are dimensional reduc-
tions from massless particles in Dþ 1 to massive particles
in D dimensions, one might wonder which mechanisms or
which dual massless spin-two models inD ¼ 4 give rise to
the three self-dual models described here in a unified way.
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