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1 Introduction

Both in phenomenological (effective) field theories, as well as in fundamental theories like

string theory, we have generically one or many scalar fields, usually of small mass, that

in principle could play a role in cosmology. Generically this is a problem however, since

we have not yet observed such scalars.1 Indeed, there is usually an argument against light

scalar fields as they produce a fifth force, violate the equivalence principle and thus disturb

the predictions of general relativity at planetary or solar system scales, while also affecting

laboratory experiments on Earth (see [4–7] as well as [8] for an analysis of fifth force tests).

The idea of chameleon scalars [4, 5] was introduced as a way to avoid these constraints,

while still having a light scalar on cosmological scales [6, 9] A chameleon scalar has an effec-

tive potential, and in particular a mass, depending on the local matter density. As a result,

on solar system and planetary scales, the constraints are satisfied because the chameleon

is screened, only a thin shell around a large spherical body effectively interacts via the

scalar, whereas on Earth the lab constraints are evaded because the mass of the scalar on

Earth is large, due to the large ambient densities (Earth and atmosphere). However, it

has proven challenging to embed the chameleon mechanism inside a fundamental theory.

In particular, in string theory we have a large number of scalar moduli, generically light,

coming among others from the size and shape parameters of the compact space. Usually

we have to find a method to stabilize these moduli, i.e. to give them large masses around

a minimum. This is a notoriously difficult problem [10, 11], for which there are solutions,

but not satisfactory ones [12, 13],2 a problem which would be alleviated if we could have

one or more of these moduli be a chameleon, hence the increased interest in finding an

embedding of the chameleon idea inside string theory.

1We have just observed a scalar, likely the Higgs, at the LHC [2, 3], but that is very massive, and it is

very hard to make a model where the Higgs is a scalar relevant for cosmology, like the inflaton. It is also not

clear as of yet if this scalar is fundamental, or is some composite object which was not present at early times.
2In the context of inflation, moduli stabilization by fluxes leads to either destroying the would-be

inflaton by a large mass — “the eta problem in string theory” — or leaving a modulus other than the

inflaton unstabilized.
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In [1], a possible way to do this was proposed, where the chameleon scalar is the volume

modulus % for the compact space. A general phenomenological way to obtain a chameleon

theory based on a supergravity compactification was proposed, with a potential for the

volume modulus with a quadratic approximation around a stabilized minimum, together

with a steep exponential on the large volume side of the potential. An example was given,

based on the KKLT construction [12], but where the KKLT superpotential W = W0+Aeia%

has a < 0 instead of a > 0.3 In [1] it was also assumed that % was in units of four

dimensional MPl, as opposed to fundamental string units (related to 10 dimensional Planck

scale), which implies that a must be much larger than its natural value. This problem was

eliminated in [17], where % was assumed to be in fundamental string units, being forced by

experimental constraints to have a scenario with two large and varying extra dimensions,

and the other four fixed. The KKLT potential was not a perfect example of the general

phenomenological case, the only important difference being that it led to a chameleon mass

on cosmological scales constrained by mcosmo & 1015H0 (as opposed to mcosmo & 103H0 for

the general phenomenological potential), which makes it less interesting for cosmology.

In this note, by considering a racetrack potential (for uses and abuses see [18–20]), we

show that a simple modification of the model solves the problem. Specifically, by adding

two KKLT-type exponentials instead of one we obtain a model that still satisfies all ex-

perimental constraints, while being interesting for cosmology. In section 2 we present the

model, first reviewing the set-up in [1, 17] and then modifying it for our purposes. In

section 3 we check the experimental constraints, and verify that there exist parameters

that satisfy them. This is a proof in principle that this can be done, however we do not

claim to solve any of the fine tuning problems associated either with racetrack potentials

or the cosmological constant problem.

2 The model

When dimensionally reducing a 10-dimensional gravitational theory down to four dimen-

sions, in general we make a reduction ansatz

ds2
D = R2ds2

4 + gαβdxαdxβ ;

R =
1√

V6M6
10

. (2.1)

that guarantees that we are in the four dimensional Einstein frame given by ds2
4. Here V6 is

the volume of the compact extra dimensions, and M10 is the 10-dimensional Planck mass.

As explained in [17], if we use variables defined in terms of the 10-dimensional Planck mass

as above (as opposed to 4 dimensional Planck units), experimental constraints force us to

take only n = 2 large extra dimensions, and the other four are fixed at the M10 scale.

3This is however possible, as stressed in [1], even in the context of KKLT [14], as well as in more general

string contexts [15, 16].
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The KKLT-type model in [1] has a superpotential (KKLT has e+i|a|%)4

W (%) = W0 +Ae−i|a|% (2.2)

written in terms of a complex scalar % whose imaginary part is related to volume V4 of

4-cycles in the compact space that can be wrapped by Euclidean D3-branes,

σ ≡ Im % = M4
10V4

√
π (2.3)

The cycles that give the leading contribution are the largest ones, for which one finds

σ = (M10)2r2√π = R−2√π (2.4)

and the factor of
√
π can be absorbed in a trivial redefinition of parameters.

The tree level Kähler potential for the case of n = 2 is5

K(%, %̄) ' −2M2
Pl ln[−i(%− %̄)] (2.6)

The resulting supersymmetric potential is

V (R)=
1

2M2
Pl

[
A2a2e2|a|R−2−2A|a|R2e|a|R

−2
(
W0+Ae|a|R

−2
)
− 1

2
R4
(
W0+Ae|a|R

−2
)2
]

(2.7)

and has a local AdS minimum at

σmin = R−2
min ≈

1

|a|
ln
W0

A
(2.8)

As in KKLT, at the end we introduce a stack of antibranes, which break supersymmetry

and adds a term +D/σ2 to the potential.6 This term turns the local AdS minimum into

4As explained in [1], it is not hard to obtain a term with the negative sign in the superpotential even

in the KKLT context [14], moreover with a highly suppressed prefactor A. There the superpotential with

A = Ce−m9c<S> is obtained by including gluino condensation on an extra D9-brane with magnetic flux in

the KKLT scenario, where 2πS = e−φ − ic0 is the dilaton modulus, c = 8π2/N9 and the coupling function

on the D9-brane is 1/g2D9 = |m9ReS − w9ReT|, with T = −i%. Moreover, rather generally, as explained in

the review [15], by imposing T-duality invariance (and modular invariance) on gaugino condensation super-

potentials obtained for tori compactifications with dilaton modulus S and volume modulus T , one obtains

generically superpotentials of the form W (S, T ) ∼ η(iT )−6 exp(−3S/8πb), with η(x) the Dedekind eta func-

tion. At large volume Re T →∞, as we need here, we obtain W ∝ eπT/2, with a coefficient which is again

exponentially small in the dilaton modulus, exp(−3S/8πb), with b a renormalization group factor of order 1.
5For n = 6 extra dimensions we have

K = −3M2
Pl ln[−i(ρ− ρ̄)] (2.5)

but in general we write the reduction ansatz for the gravity action with an overall scale % for the extra dimen-

sions, and find the Kähler potential that gives the same scalar action. For n = 2 we obtain the stated result.
6Note that in KKLT one has a potential D/σ3, which arises for n = 6 large extra dimensions as fol-

lows [21]. The volume modulus is written as % = ie4u, and then the 4d part of the metric is g
(4)
µν = e−6ug̃

(4)
µν ,

with g̃
(4)
µν the Einstein frame metric, leading to

∫
d4x

√
−det g

(4)
µν =

∫
d4x

√
− det g̃

(4)
µν e
−12u ∝ 1/Im%3 =

1/σ3. But for general n, g
(4)
µν = e−nug̃

(4)
µν , and for n = 2 we have Im% = ie2u, and hence for n = 2 we have∫

d4x

√
− det g

(4)
µν =

∫
d4x

√
−det g̃

(4)
µν e
−4u ∝ 1/Im%2 = 1/σ2.

– 3 –
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Figure 1. The chameleon potential as a function of σ = R−2 with A ≡ e−|a|σ0 . For clarity of

visualisation we plot numerically reasonable values of the parameters instead of realistic ones.

a global dS minimum, as required by the observed cosmological constant. The minimum

shifts only very slightly (as already explained by KKLT [12]), and the behaviour around

the minimum is also not much changed, as there D/σ2 varies very little, hence for our

purposes we can consider adding the perturbation D/σ2 at the end.

The resulting potential is plotted in figure 1 for values of the parameters which allow

for visualization (instead of realistic ones).

The potential (2.7) has a local minimum, around which we can make a quadratic

approximation for R greater than some R∗, R > R∗, whereas at R < R∗ we can approximate

it by the leading exponential, ∼ e2|a|R−2
. Thus R∗ is phenomenologically defined as the

transition point between the two behaviours, its definition depending on the exact form of

the potential. For the racetrack, we will define it more precisely in (3.9). However, because

the minimum of the potential itself is made up from the same exponentials, we cannot

treat the region around the minimum as independent from the region R < R∗.

The constraint for laboratory experiments was found [1, 17] to be expressed in terms

of R∗ (here R = R∗ implies σ = σ∗),

σ∗ = R−2
∗ &

1030

|a|
, (2.9)

which, together with accelerator constraints on M10 and gravity constraints on r can only

by satisfied by n = 2 large extra dimensions (in which case we have the σ = R−2 as we

have assumed until now). More precisely, we have now

M10 . 2.5|a|1/2 TeV ;

r∗ &
100

|a|
µm (2.10)

We will consider in these constraints the natural value |a| ∼ 1. To satisfy collider con-

straints (for n 6= 2, from the equivalent of (2.9) we would find either a M10 too low such

that it would have been observed at current accelerators, or r∗ too high so that grav-

ity experiments would have seen this effect, and for n = 2 (2.10) are only satisfied in a

– 4 –
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braneworld scenario; see [17] for more details), we then must have the Standard Model

fields be confined to a brane, with the two large extra dimensions transverse to it, i.e. a

Dp-brane with p ≤ 7, situated at a fixed point in the extra dimensions.

The Kähler potential (2.6) implies that the canonical scalar field asssociated with

% = iσ is

φ = −MPl ln
σ

σ∗
, (2.11)

where we have put φ = 0 at the present time, leading to a coupling function for the coupling

to matter density (from (2.1))7

A(φ) ≡ R

R∗
= eφ/2MPl . (2.12)

That means that the effective potential, including the coupling to matter density ρ is

Veff(φ) = V (φ) + ρ
R

R∗
= V (φ) + ρeφ/2MPl . (2.13)

While a potential which can be approximated by a quadratic around the minimum up

to R = R∗ was found in [1] to constrain the mass of the chameleon on cosmological scales

as mcosmo & 103H0, for the potential (2.7) we have mcosmo & 1015H0.

To avoid this stringent constraint, we now consider a racetrack type of superpoten-

tial [18], with two exponentials in the superpotential instead of one, i.e.

W (%) = W0 +A1e
ia1% +A2e

ia2% , (2.14)

with a1, a2 < 0 and comparable, and A1, A2 > 0 and comparable as well, leading to a

potential

V (R) =
1

2M2
Pl

[(
A1a1e

|a1|R−2
+A2a2e

|a2|R−2
)2
− 2R2

(
A1|a1|e|a1|R

−2
+A2a2e

|a2|R−2
)
×

×
(
W0 +A1e

|a1|R−2
)
− 1

2
R4
(
W0 +A1e

|a1|R−2
+A2e

|a2|R−2
)2
]

(2.15)

We want the minimum and the leading exponential to be independent, so we need to choose

the two exponentials to be very close, and a1 to dominate the σ > σ∗ (or R < R∗) be-

haviour, while a2 to dominate the minimum. In other words, we need |a1| > |a2|, yet very

close in value, but we also need

A2|a2|e|a2|σmin > A1|a1|e|a1|σmin (2.16)

The condition for the minimum is D%W = ∂%W + (∂%K)W = 0, which gives

A1|a1|σmine
|a1|σ +A2|a2|σmine

|a2|σ = W0 +A1e
|a1|σ +A2e

|a2|σ (2.17)

which can be solved (with the above assumptions, and considering that |ai|σmin � 1) by

σmin '
1

|a1|
ln
W0

|a1|
(2.18)

7Note that the coupling here is fixed by the theory and is not a free parameter to be fixed by experiment

as is usually assumed, see for example [22–24].

– 5 –
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and for which the minimum is

V0 ' −
3W 2

0

4σ2
minM

2
Pl

(2.19)

By simply allowing for this kind of superpotential we are allowed more freedom to fix

our parameters and thus find a successful embedding. However, we should be cautious of

such tuning as such as was pointed out in [20] such potentials are not necessarily stable to

all corrections. Our goal here is simply to prove in principle that such an embedding can

be done.

3 Experimental constraints

We already mentioned the constraint (2.9) obtained from laboratory experiments. A weaker

constraint appears from the fact that the Milky Way galaxy must be screened, otherwise

the field value in the solar system, φsolar system, would not be fixed by the local density.

That means that the galaxy needs to have a thin shell, i.e.(
3∆R
R

)
galaxy

=
φcosmo − φsolar system

2gMPlΦG
< 1 , (3.1)

where ΦG ∼ 10−6 is the Newtonian potential of the galaxy and g = 1/2 is the chameleon

coupling (see (2.13)). Since the field variations are small, we have |∆σ/σ| ' 2∆R/R =

∆φ/MPl, meaning we obtain the constraint

σmin − σ∗
σmin

'
Rmin −Rsolar system

2R∗
. 10−6 , (3.2)

We will see later that this constraint is much weaker than (2.9), but constrains the same

quantity.

We want to derive a constraint on the mass of the chameleon field on cosmological

scales, when the chameleon is close to the minimum. Therefore we want to find the con-

straint on

m2
cosmo '

g2R2
∗

M2
Pl

d2V

dR2

∣∣∣∣
R=Rmin

=
g2R2

∗
M2

Pl

[
dσ

dR
(Rmin)

]2 d2V

dσ2
(σmin) (3.3)

Expanding the potential (2.15) around the minimum (2.18) with the value (2.19) for the

potential, and assuming the condition (2.16), we find that

d2V

dσ2
(σmin) ' 4

3
a2

2|V0| (3.4)

Substituting back in (3.3), and using σ = R−2 and g = 1/2, we get

m2
cosmo '

4

3
a2

2σ
2
min

|V0|
M2

Pl

(3.5)

so we see that a constraint on mcosmo comes from a constraint on |V0|.

– 6 –
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Such a constraint comes from imposing that the field value is not in the potential region

of the leading exponential (R < R∗) in all the Universe, and that the low densities required

to be on the quadratic region of the potential (R > R∗) are reached on some large scales,

namely that the density ρ∗ corresponding to R∗ must be greater than the cosmic density,

ρ∗ = R∗

∣∣∣∣dVdR
(R∗)

∣∣∣∣ ≥ H2
0M

2
Pl . (3.6)

But in the leading exponential region of the potential,

V (σ)− V0 '
A2

1a
2
1

2M2
Pl

e2|a1|σ (3.7)

which gives

ρ∗ = R∗

∣∣∣∣ dσdR (R∗)
dV

dσ
(σ∗)

∣∣∣∣ ' 2|a1|σ∗A2
1a

2
1

M2
Pl

e2|a1|σ∗ ' 8

3
|a1|σmin|V0|e2|a2|(σ∗−σmin) ≥ H2

0M
2
Pl.

(3.8)

Since a1 ' a2 and σmin ' 1030, comparing (3.5) with (3.8), we see that now we have an

extra factor, e|a2|(σmin−σ∗), to help. It was found in [1] that the constraint in the case of

the phenomenological potential with an independent quadratic region near the minimum,

and an unrelated leading exponential for R < R∗ was mcosmo ≥ 103H0. Since we could

not do better, at most we can reach this constraint using the factor e|a2|(σmin−σ∗). Direct

comparison shows that a factor of e|a2|(σmin−σ∗) = 1012 would give us back the constraint

mcosmo ≥ 103H0.

In the phenomenological potential, σ∗ (or R∗) is the separation point between the

two (independent) parts of the potential, the quadratic and leading exponential. In the

case of our potential, we need a definition compatible with this phenomenological one.

Therefore we define σ∗ as the place where the derivative of the leading exponential equals

the derivative of the other exponential, since this is indeeed the transition point from the

leading exponential to the rest. We can check from (2.15) that this gives approximately

e(|a1|−|a2|)σ∗ =
A2a2

A1a1
(3.9)

Calling by K the ratio

K =
A2|a2|e|a2|σmin

A1|a1|e|a1|σmin
(3.10)

which had to be bigger than 1 according to (2.16), the condition

e|a2|(σmin−σ∗) = 1012 (3.11)

gives (
A2|a2|e|a2|σmin

A1|a1|e|a1|σmin
=

)
K = 10

12
(|a1|−|a2|)
|a2| (3.12)

We now also note that we need

σ∗ − σmin '
27

|a2|
(3.13)

– 7 –
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so going back to the galaxy screening constraint (3.2), it now translates into

|a2|σ∗ & 3× 107 (3.14)

which is much weaker than (2.9).

From (3.8), with (3.11), we get

|V0| &
10−144

|a1|σmin
M4

Pl (3.15)

The constraint on |a1|σmin goes the opposite way, but assuming it is saturated at 1030, we

get

|V0| & 10−174M4
Pl (3.16)

and then also (from (2.19))

W0 & 10−57M3
Pl (3.17)

The coefficients A are again extremely small, but writing Aie
|ai|σ = M3

Ple
|ai|(σ−σi0), we have

σi0 ∼ − logAi/M
3
Pl ∼ 1030.

Finally, when adding the supersymmetry-breaking antibrane term +D/σ2 to the po-

tential, as in KKLT, we can fix the value of σ as follows. For the A’s and W0’s we took,

the value of the supersymmetric potential today is close to Vtoday ∼ −10−174M4
Pl, negli-

gible compared to the observed positive cosmological constant, hence we can assume that

all the cosmological constant term comes from the supersymmetry-breaking term, giving

D/σ2
∗ ∼ 10−122M4

Pl or, since σ∗ ∼ 1030, D ∼ 10−62M4
Pl.

4 Conclusions

In this paper we have considered a “racetrack” type superpotential W = W0 + A1a
ia1% +

A2e
ia2% instead of the single KKLT exponential, in order to obtain a chameleon scalar

from a string theory context, generalizing the work in [1]. We have also used the more

natural large extra dimensional scenario from [17], in order to have a1, a2 closer to what

can be obtained in KKLT. The simple modification of the “racetrack” allowed us to avoid

having a too large chameleon mass on cosmological scales, and we found that we can have

mcosmo ≥ 103H0, which can have implications interesting for cosmology.
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