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A B S T R A C T

Environmental impacts can be more accurately assessed with the aid of spatial characterization of potentially
toxic elements (PTEs). In fact, developing cost-effective, environmentally friendly spatial characterization
methods for PTEs can facilitate the expeditious, accurate, detailed diagnosis of soil in large areas. In this study,
we used three geomorphic surfaces of Oxisols to assess the ability of chemical and X-ray diffraction analyses of
iron oxides, diffuse reflectance spectroscopy (DRS) and magnetic susceptibility (MS) measurements to predict
the contents in PTEs (Ba, Co, Cr, Cu, Mn, Mo, Ni, Pb and Zn) and their spatial variability. Magnetic susceptibility
and diffuse reflectance spectroscopy allowed well-calibrated prediction models for Ba, Co, Cu, Mn and Ni to be
developed, whereas DRS-calibrated methods afforded more accurate prediction of Ba and Mn contents, and
magnetic susceptibility-calibrated methods of Co and Ni contents. The correlation between PTEs and free iron
contents, and their spatial pattern, testifies to the goodness of the proposed methods for predicting the contents
of potentially toxic elements in soils.

1. Introduction

Agriculture is a major source of potentially toxic elements (PTEs) in
soil worldwide, but particularly in heavily cultivated areas (Alloway,
1995). Characterizing the spatial distribution of PTEs in farming areas
is crucial to assessing the environmental impact of soil contamination
(Cattle et al., 2002). Geostatistics at different scales is one commonly
used tool for this purpose (Burak et al., 2010; Lin et al., 2014; Nanos
and Martín, 2012). In fact, geostatistical maps are useful for identifying
contaminated areas to assist decision-making. However, geostatistical
analyses of large areas require using also large numbers of samples,
which makes laboratory determinations of PTEs contents unfeasible for
obvious economic and time-related reasons. A need for cost-effective,
environmentally friendly methods for the spatial characterization of
element contents therefore exists to facilitate the rapid, accurate diag-
nosis of large areas at a detailed level.

Prediction models can be highly useful for characterizing spatial
variability in continuous variables such as soil attributes, which in-
volves using large numbers of samples with conventional methods

(Lagacherie and McBratney, 2007). Because they co-precipitate with,
and specifically adsorb, Co, Cr, Cu, Mn, Mo, Ni, Zn and As from solution
(Alloway, 1995), iron, aluminium and manganese oxides play a central
role in PTEs chemistry and behaviour. PTEs contents can thus be ex-
pected to change in parallel with iron oxides, and iron oxides to be
effective PTEs predictors for highly weathered soils such as Oxisols —
the predominant soil order in tropical regions.

Magnetic susceptibility (MS) is an effective technique for predicting
soil attributes influenced by iron oxides such as adsorbed phosphorus
(Camargo et al., 2016), and also for assessing metal contamination of
soil (Morton-Bermea et al., 2009).

Diffuse reflectance spectroscopy (DRS) provides a rapid, in-
expensive, non-destructive prediction tool for the simultaneous char-
acterization of various soil attributes (Camargo et al., 2015; Colombo
et al., 2014; Guerrero et al., 2016; Viscarra-Rossel et al., 2010; Viscarra
Rossel et al., 2016). Although low concentrations of PTEs preclude
observation of their spectral features, PTEs contents can be predicted by
examining the relationship between soil attributes such as iron oxides
and spectral features (Stenberg et al., 2010; Wu et al., 2007). The
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potential of spectroscopic techniques for PTE prediction has been the
subject of some recent reviews (Horta et al., 2015; Shi et al., 2014).

The primary aims of this study were (a) to predict the contents in
PTEs (Ba, Co, Cr, Cu, Mn, Mo, Ni, Pb and Zn) from iron oxide contents,
magnetic susceptibility (MS) and diffuse reflectance spectra (DRS); and
(b) to characterize the spatial variability of PTEs in Brazilian Oxisols.

2. Materials and methods

2.1. Study site

The study site spanned an area of 500 ha under a sugarcane plan-
tation located near Guariba, in the North–East of the São Paulo state in

Brazil (Fig. 1a). One hundred soil samples (Series 1) were collected
from depths of 0–25 cm at 25m intervals along a transect spanning
three different geomorphic surfaces (GSs) (Daniels et al., 1970;
(Fig. 1b). Also, another 206 soil samples (Series 2) were collected from
subareas each representing 2.5 ha around the transect in order to pre-
dict unknown values.

The most evolved geomorphic surface, GS I, is a depositional surface
occupying 400m of the hillside; it has slopes of 0–4% (Fig. 1c) and
Typic Hapludox soil (Soil Survey Staff, 2010). The boundary between
GS II and GS III is approximately 1400m from the top of the hillside. GS
II has a gentle slope and its soils are Typic Hapludox and Typic Eu-
trudox (Soil Survey Staff, 2010). The most recent surface, GS III, has a
steeper slope (7%) than the other two and Typic Eutrudox soil (Soil

Fig. 1. Study site. A) Location of the city of Guariba (São Paulo, Brazil); B) Sample collection area (500 ha) and transect; and C) Transect profile. GS geomorphic surface. (Adapted from
Camargo et al., 2015).

Table 1
Physical and chemical properties of the soil profile in each geomorphic surface (GS) (Adapted from Camargo et al., 2014 and 2016).

Profile Depth Horizon Color pH OM Ca Mg K SB CEC V CS FS Silt Clay S/C Fe2O3 Al2O3

m Moisture H2O KCl g kg−1 mmolc kg−1 % g kg−1 g kg−1

GS I – Typic Hapludox (Soil Survey Staff, 2010)
1 0–0.15 A1 5YR 4/6 7.4 6.6 32.84 57.3 7.40 1.41 66.11 78.07 84.69 387 262 58.5 292.5 0.20 48.1 35

0.90–1.40 Bw2 5YR 4/4 5.0 4.3 11.33 4.5 2.30 0.80 7.60 38.44 19.78 286 284 69.5 360.5 0.19 58.1 55

GS II – Typic Hapludox (Soil Survey Staff, 2010)
2 0–0.20 Ap1 5YR 4/5 6.0 4.9 19.37 16.80 5.60 1.72 24.12 51.87 46.50 307 304 74.5 314.5 0.24 59.4 40

1.20–1.60 Bw2 5YR 4/6 5.1 4.4 10.91 1.90 1.00 3.97 6.87 37.71 18.23 328 228 64.5 379.5 0.17 65.8 55

GS II – Typic Eutrudox (Soil Survey Staff, 2010)
3 0–0.15 Ap1 5YR 4/4 6.5 5.7 21.21 24.20 10.70 2.94 37.84 58.08 65.16 367 298 77.5 257.5 0.30 46.9 30

0.85–1.00 Bw2 5YR 4/5 6.1 5.6 10.68 8.50 2.40 0.80 11.70 28.10 41.65 333 269 59.5 338.5 0.18 50.6 45

GS III – Typic Eutrudox (Soil Survey Staff, 2010)
4 0–0.15 Ap1 2.5YR 4/6 6.1 5.1 27.12 32.20 9.30 2.33 43.83 78.09 56.13 312 192 98 398 0.25 82.1 50

1.00–1.40 Bw2 2.5YR 5/6 6.5 5.9 9.62 18.20 2.90 0.19 21.29 39.51 53.90 264 182 76 478 0.16 96.2 55

OM=Organic matter, SB= Sum of bases, CEC= cation-exchange capacity, BS=Base saturation, CS= coarse sand, FS= fine sand, S/C= silt/clay ratio.
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Survey Staff, 2010). Table 1 shows the representative profiles for each
soil. The soils evolved from sandstones in the Bauru Group, Adamantina
Formation. Further details about the experimental site can be found
elsewhere (Camargo et al., 2014, 2015).

2.2. Laboratory analyses

The soil samples were subjected to grain-size analysis according to
Day (1965). pH was measured potentiometrically in 1:2.5 soil:
0.01 mol L−1 CaCl2 suspensions (Raij et al., 1987) and exchangeable
cations were extracted by passage through an ionic exchange resin (Raij
et al., 2001). The analytical results were used to calculate the sum of
bases (SB) and the cation-exchange capacity (CEC) of the soils. Organic
carbon was quantified by oxidation and the organic matter (OM) con-
tent estimated by multiplying the organic carbon concentration by a
factor of 1.724 (Jackson, 1985).

Potentially toxic elements were extracted by using USEPA method
3051A (United States Environmental Protection Agency - USEPA,

1996), which involves attacking samples with concentrated acid in a
microwave oven under controlled temperature and pressure conditions.
Inductively coupled plasma–optical emission spectroscopy (ICP-OES)
was used to determine PTEs (Ba, Co, Cr, Cu, Mn, Mo, Ni, Pb and Zn) in
the resulting extracts. The digestion method used does not afford dis-
solution of silicate minerals but can extract elements adsorbed to iron
and aluminium oxides, thus allowing a semi-total PTE content to be
estimated.

The contents in iron oxides extracted by sodium dithionite–ci-
trate–bicarbonate (Fed) at 25 °C for 16 h were determined according to
Mehra and Jackson (1960), whereas those in iron oxides extracted by
acid ammonium oxalate (Feo) were quantified according to McKeague
and Day (1966).

Powder X-ray diffraction spectroscopy was used to determine he-
matite (Hm) and goethite (Gt) after concentration by boiling the clay
fraction in NaOH (Norrish and Taylor, 1961). Also, the gibbsite/
(gibbsite+ kaolinite) [Gb/(Gb+Kt)] ratio was estimated by removing
iron oxides from the clay fraction according to Mehra and Jackson
(1960). Powder XRD patterns were recorded at a scan speed of 1° 2θ/
min on a Mini-Flex Rigaku II spectrometer (20mA, 30 kV) using Cu Kα
radiation. The Hm/Gt ratio was estimated by comparing the peak areas
obtained from the Hm/Gt XRD tracing ratio with the ratios for Gt–Hm

Table 2
Descriptive statistics for the soil attributes.

GS Mean Minimum Maximum CV (%)

Clay (g kg−1) I⁎ 346b 328 377 4
II⁎⁎ 331b 285 390 7
III⁎⁎⁎ 434a 326 569 16
Transect⁎⁎⁎⁎ 357 285 569 18

Sand (g kg−1) I 613a 584 643 3
II 638a 570 693 4
III 502b 298 645 22
Transect 578 298 693 16

OM (g kg−1) I 27a 21 43 16
II 25a 18 37 20
III 29a 22 38 14
Transect 27 18 43 17

pH I 5.9a 5.2 6.5 6
II 5.3b 4.6 6.0 5
III 5.2b 4.4 6.2 5
Transect 5.4 4.4 6.5 9

CEC (mmolc kg−1) I 74a 60 97 11
II 61b 52 77 9
III 67ab 41 95 18
Transect 66 41 97 15

Fed (g kg−1) I 40.2b 26.8 44.8 10
II 37.7b 27.9 50.3 13
III 65.1a 39.6 100.2 25
Transect 51.0 26.9 100.2 34

Feo (g kg−1) I 5.4b 2.2 7.4 20
II 5.2b 2.6 9.0 20
III 6.7a 3.1 9.6 22
Transect 5.8 2.2 9.6 22

Gt (g kg−1) I 17.3b 9.6 23.1 19
II 16.3b 7.9 20.8 20
III 21.1a 6.9 55.7 67
Transect 18.4 6.9 55.7 50

Hm (g kg−1) I 33.9b 22.7 40.3 11
II 31.5b 16.7 50.8 22
III 66.5a 38.8 99.4 22
Transect 47.9 16.7 99.4 43

MS (10–6 m3 kg−1) I 2.1b 1.84 3.63 21
II 2.8b 1.38 4.97 39
III 9.4a 5.00 22.72 52
Transect 5.4 1.38 22.72 87

Gb/(Gb+Kt) I 0.22b 0.18 0.26 11
II 0.29b 0.16 0.49 26
III 0.41a 0.34 0.54 14
Transect 0.33 0.16 0.54 30

GS geomorphic surface, CV coefficient of variation. Means of the same attribute followed
by the same letter were not significantly different as per Tukey's test at the 5% probability
level.

⁎ N=21.
⁎⁎ N=39.
⁎⁎⁎ N=40.
⁎⁎⁎⁎ N=100.

Table 3
Descriptive statistics for the target PTEs.

GS Mean Minimum Maximum CV (%)

mg kg−1

Ba I⁎ 22.8b 14.3 65 56
II⁎⁎ 19.4b 10.9 58.7 47
III⁎⁎⁎ 111.3a 54.1 237.8 45
Transect⁎⁎⁎⁎ 58.1 10.9 237.8 96

Co I 2.6b 2.1 3.7 14
II 3.8b 2.4 5.1 22
III 6.5a 4.3 10.4 27
Transect 4.5 2.1 10.4 46

Cr I 67.4a 46.1 136.6 30
II 64.6a 44.1 88.2 14
III 55.3b 42.8 73.30 11
Transect 61.3 42.8 136.6 20

Cu I 1.9b 1.5 3.8 27
II 1.9b 1.6 2.4 10
III 2.9a 2.0 4.1 16
Transect 2.3 1.5 4.1 26

Mn I 141.8c 118.9 204.4 14
II 210.0b 112.8 521.3 50
III 460.8a 285.0 622.0 19
Transect 300.5 112.8 622.0 54

Mo I 1.0a 0.5 4.2 84
II 0.5b 0.3 1.1 31
III 0.5b 0.1 1.0 47
Transect 0.6 0.1 4.2 75

Ni I 4.5b 3.5 5.5 15
II 5.3b 4.0 7.6 15
III 9.5a 5.6 15.9 27
Transect 6.9 5.6 15.9 41

Pb I 16.6a 7.8 68.0 89
II 10.4b 7.7 14.6 15
III 15.0a 10.5 24.7 20
Transect 13.5 7.7 68.0 53

Zn I 26.3b 13.5 98.4 76
II 20.9b 13.6 53.2 40
III 40.9a 25.7 66.6 31
Transect 30.2 13.5 98.4 52

GS geomorphic surface, CV coefficient of variation. Means of the same attribute followed
by the same letter were not significantly different as per Tukey's test at the 5% probability
level.

⁎ N=21.
⁎⁎ N=39.
⁎⁎⁎ N=40.
⁎⁎⁎⁎ N=100.
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standard mixtures. The proportions of Hm and Gt were calculated by
assigning them the difference between Fed and Feo. Finally, the Gb/
(Gb+Kt) ratio was obtained from the areas under the reflection peaks
002 for Gb and 001 for Kt.

Soil samples were ground to< 2mm in an agate mortar for DRS
analysis. Samples were scanned in the visible (Vis), near-infrared (NIR)
and mid-infrared (MIR) ranges (380–16,666 nm), using the following
equipment: (a) a Perkin Elmer Lambda 950 spectrophotometer
equipped with an integrating sphere to scan the wavelength range
380–2300 nm at 1 nm intervals; (b) a LabSpec 5000 ASD® Vis–NIR
spectrophotometer equipped with a manual probe consisting of a lamp
and fibre optics for acquisition of reflected radiation to scan the pre-
vious range with the same resolution; and (c) a Bruker Optics Tensor 27

MIR spectrophotometer equipped with a Pike EasiDiff reflectance
hemisphere to scan the wavenumber range 4000–600 cm−1

(2500–16,666 nm as wavelength) at 8 cm−1 intervals 64 times each
second. Teflon (PTFE) and potassium bromide (KBr) were used as
spectral references for the Vis–NIR and MIR range, respectively.

Low-frequency (0.47 kHz) magnetic susceptibility measurements of
air-dried soil samples were made with an MS2 meter from Bartington
Instruments coupled to a two-frequency MS2B laboratory sensor.

2.3. Statistical analysis

The data for the transect samples (Series 1) were analysed by using
descriptive statistics to calculate means, maxima, minima and

Table 4
Pearson's correlation coefficients between PTEs and soil attributes.

Sand Clay OM pH CEC Fed Feo Gt Hm MS Gb/(Gb+Kt)

Ba −0.90⁎⁎ 0.90⁎⁎ 0.27⁎ −0.23⁎ 0.28⁎ 0.87⁎⁎ 0.53⁎⁎ 0.17 NS 0.78⁎⁎ 0.92⁎⁎ 0.75⁎⁎

Co −0.85⁎⁎ 0.85⁎⁎ 0.16NS −0.34⁎⁎ 0.21NS 0.86⁎⁎ 0.50⁎⁎ 0.20 NS 0.78⁎⁎ 0.92⁎⁎ 0.86⁎⁎

Cr 0.25⁎ −0.28⁎ −0.01NS 0.28⁎⁎ 0.02NS −0.27NS −0.21NS −0.08 NS −0.17NS −0.27⁎ −0.19NS

Cu −0.70⁎⁎ 0.70⁎⁎ 0.30⁎⁎ −0.35⁎⁎ 0.24⁎ 0.76⁎⁎ 0.54⁎⁎ 0.11 NS 0.73⁎⁎ 0.72⁎⁎ 0.66⁎⁎

Mn −0.64⁎⁎ 0.69⁎⁎ 0.07NS −0.20NS 0.01NS 0.73⁎⁎ 0.31⁎⁎ 0.04NS 0.80⁎⁎ 0.80⁎⁎ 0.84⁎⁎

Mo 0.18NS −0.20NS 0.02NS 0.12NS 0.13NS −0.22NS −0.18NS −0.15NS −0.18NS −0.26⁎ −0.47⁎⁎

Ni −0.62⁎⁎ 0.64⁎⁎ 0.12NS −0.36⁎⁎ 0.16NS 0.73⁎⁎ 0.45⁎⁎ 0.06NS 0.77⁎⁎ 0.71⁎⁎ 0.75⁎⁎

Pb 0.24⁎ 0.25⁎ 0.06NS 0.20NS 0.22NS 0.22NS 0.25⁎ −0.10NS 0.25⁎ 0.18NS 0.41⁎⁎

Zn −0.71⁎⁎ 0.68⁎⁎ 0.34⁎⁎ −0.08NS 0.39⁎⁎ 0.70⁎⁎ 0.48⁎⁎ 0.04NS 0.65⁎⁎ 0.73⁎⁎ 0.60⁎⁎

NS not significant.
(N=100).

⁎ Significant at p < 0.05.
⁎⁎ Significant at p < 0.01.

Fig. 2. Typical spectra for the soils at the study site. a) Vis–NIR spectra acquired with the Lambda 950 spectrometer; b) Vis–NIR spectra obtained with the LabSpec 5000 spectrometer;
and c) MIR spectra acquired with the Tensor 27 spectrometer.
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coefficients of variation. Pearson's correlation coefficients between
PTEs contents and soil attributes were also calculated, and means
compared through Tukey's test at the 5% probability level.

PTEs prediction models were calibrated by applying multiple linear
regression (MLR) to the data for Series 1 and partial least-squares re-
gression (PLSR) to the DRS spectra for Series 1 samples (Geladi and
Kowalski, 1986). The accuracy of MLR calibrations was evaluated from
the coefficient of determination (R2). Reflectance measurements were
converted into absorbance data [log10 (1/Reflectance)] for chemo-
metric calibrations based on leave-one-out cross-validation, and a
mean-centring pretreatment was applied over all studied ranges. PLSR
was implemented by using the software ParLeS® (Viscarra-Rossel,
2008) and the accuracy of PLSR calibration assessed in terms of the
adjusted coefficient of determination (R2

adj), standard deviation error
(SDE) and residual prediction deviation (RPD), the last being calculated
as the ratio of the standard deviation (SD) to the root mean square error
(RMSE) for the residuals of the original data.

The influence of a given attribute on the PLSR prediction of another
is usually assessed through the “variable importance in the projection”
(VIP) (Wold et al., 2001; Yan et al., 2013). Thus, variables identified as
being the most important in explaining the prediction of a given attri-
bute correspond to the strongest peaks in VIP plots. “Unknown” PTEs
values were predicted by applying MLR- and PLSR-calibrated models to
Series 2 samples.

Thereafter, the spatial dependence of PTE contents, both observed
and predicted by the calibrated models, was assessed from experimental
semivariograms. On the assumption that the function for the intrinsic
hypothesis was stationary (Vieira, 2000), the semivariograms were es-
timated from

̂ ∑= − +
=

γ h
N h

Z x Z x h( ) 1
2 ( )

[ ( ) ( )]
i

N h

i i
1

( )
2

(1)

where ̂γ h( ) is the semivariance within a distance h, N(h) the number of
point pairs [Z(xi), Z(xi+ h)] within such a distance and xi the spatial
position of the variable Z. The experimental semivariogram was thus a
plot of ̂γ h( ) against h. Fitting a mathematical model to each experi-
mental semivariogram allowed the theoretical model coefficients for
the semivariograms [viz., nugget effect (C0), sill (C0+ C1), and range
(a)] to be estimated.

The best-fitted model was chosen in terms of the least residual sum
of squares (RSS), the coefficient of determination (R2) and the cross-
validation parameters obtained by regressing observed values against
predicted values.

An acceptable theoretical model was fit to the experimental semi-
variogram and used to estimate PTEs contents at non-sampled sites in
the study area. Ordinary kriging (OK) was estimated from the following
equation:

 ∑=
=

Z x λ Z x( ) ( )
i

N

i i0
1 (2)

where Z x( )0 is the estimate at non-sampled point x0, Z(xi) the observed
value at i (i=1, 2… n) and λi the weight of each neighbor in the es-
timation procedure. By minimizing the variance, kriging provides the
best linear unbiased predictions (BLUP) (Oliver and Webster, 2014).

3. Results and discussion

3.1. Soil properties

The sand, clay and OM contents of the soils spanned the ranges
298–693, 285–569 and 18–43 g kg−1, respectively (Table 2). pH ranged
from 4.4 to 6.5 and CEC from 41 to 97mmolc kg−1 (Table 2). GS III
exhibited the highest values of all soil attributes except sand content
and pH. The highest Fed, Feo, Gt, and Hm contents, and the highest MS
values and Gb/(Gb+Kt) ratios, were also found in GS III (Table 2).

Table 5
MLR-based calibrated models for PTE prediction.

Models R2

1 Ba= 10.44×MS −2.02 0.88
2 Ba= 5.86×MS+0.37× clay −113.72 0.90
3 Ba= 5.71×MS+0.45× clay −5.00×Fed −110.56 0.91
4 Co=0.38×MS+2.52 0.85
5 Co=0.25×MS+0.010× clay −0.95 0.87
6 Co=0.24×MS+0.01× clay −0.33× Fed −0.39 0.89
7 Cu=0.03× Fed+1.03 0.58
8 Cu=0.02× Fed +0.01×Hm+1.08 0.62
9 Mn=24.32×MS+166.20 0.66
10 Mn=29.76×MS −353.97×Fed+353.97 0.72
11 Ni= 2.00×MS+3.19 0.73
12 Ni= 1.28×MS+0.21×Hm −2.46 0.75
13 Ni= 0.53×MS+0.20×Hm+0.27× Fed −11.01 0.77
14 Zn=2.38×MS+17.87 0.55

R2 Coefficient of determination.

Table 6
Summary of the results obtained by PLSR of the target soil attributes. Data were obtained
using Lambda 950 Vis/NIR, LabSpec 5000 Vis/NIR and Tensor 27 MIR spectro-
photometers.

Lambda 950 Vis/NIR spectrophotometer

Vis (380–800 nm) Vis+NIR (380–2300 nm)

Fa Cross-validation Fa Cross-validation

R2
adj. SDE RMSE RPD R2

adj. SDE RMSE RPD

Ba 14 0.78 25.6 25.4 2.1 13 0.81 23.6 23.5 2.3
Co 7 0.83 0.4 0.4 2.5 14 0.89 0.7 0.7 3.0
Cu 15 0.62 0.4 0.4 1.6 7 0.69 0.3 0.3 1.8
Mn 15 0.86 59.8 59.5 2.7 7 0.86 59.5 59.2 2.8
Ni 15 0.75 5.9 5.9 2.0 15 0.71 6.4 6.3 1.9
Zn 6 0.40 12.5 12.4 1.3 9 0.41 12.3 12.2 1.3

LabSpec 5000 Vis/NIR spectrophotometer

Vis (380–800 nm) Vis+NIR (380–2500 nm)

Fa Cross-validation Fa Cross-validation

R2
adj. SDE RMSE RPD R2

adj. SDE RMSE RPD

Ba 5 0.70 29.5 29.4 1.9 6 0.79 24.9 24.8 2.2
Co 6 0.80 0.9 0.9 2.3 7 0.87 0.7 0.7 2.9
Cu 4 0.60 0.4 0.4 1.6 9 0.71 0.3 0.3 1.8
Mn 5 0.80 71.2 70.8 2.3 8 0.91 47.9 47.8 3.4
Ni 4 0.59 7.6 7.5 1.6 5 0.65 6.9 6.9 1.7
Zn 3 0.34 12.8 12.7 1.2 4 0.42 12.1 12.1 1.3

Tensor 27 MIR spectrophotometer

MIR (2500 to 16,666 nm)

Fa Cross-validation

R2
adj. SDE RMSE RPD

Ba 15 0.91 16.3 16.1 3.4
Co 14 0.90 0.6 0.6 3.2
Cu 6 0.69 0.3 0.3 1.8
Mn 15 0.94 39.0 39.2 4.2
Ni 8 0.66 6.9 6.9 1.7
Zn 10 0.49 11.7 11.6 1.3

a Number of PLSR factors used in the model; R2
adj adjusted coefficient of determination;

SDE standard deviation of the distribution error; RPD residual prediction deviation; RMSE
root mean square error.
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Fig. 3. Scatter plot of observed versus predicted values based on cross-validation of partial least squares regression (PLSR) and variable importance for projection (VIP) plots of the target
attributes (Series 1). a) Ba as measured in the MIR range, b) VIP plot for Ba as measured in the MIR range, c) Co as measured in the MIR range, d) VIP plot for Co as measured in the MIR
range, e) Cu as measured in the Vis–NIR range, f) VIP plot for Cu as measured in the Vis–NIR range, g) Mn as measured in the MIR range and h) VIP plot for Mn as measured in the MIR
range.

L.A. Camargo et al. Catena 165 (2018) 503–515

508



These results can be ascribed to variability in sandstone across the
Adamantina Formation, where it exhibits marked cross-stratification
with clay and iron oxide-rich materials (mudstone) (Soares et al.,
1980). The study area is described in detail elsewhere (Camargo et al.,
2014, 2015).

The highest Ba, Co, Cu, Mn, Ni and Zn contents were those found in
GS III (Table 3). The lowest Ba, Pb and Zn contents were below the
respective quality reference value (QRV) set by CETESB (Company of
Environmental Sanitary Technology of São Paulo State, Brazil) for the
state of São Paulo (CETESB, 2014): 30, 17 and 60mg kg−1, respectively
(Table 3). QRV is a measure of the natural concentration of a given
substance in non-anthropic soils (CETESB, 2001). By contrast, the
highest contents in Ba (GS III) and Zn (GS I) were above the prevention
value (PV): 120mg kg−1 (CETESB, 2014). The prevention value sets the

threshold for a potential change in the natural quality of soil (CETESB,
2001).

The Co, Cu, Mo, Ni contents along the transect were not higher than
their PVs and hence of no concern (Table 3). The lowest Cr content
(40mg kg−1) was slightly above QRV but the highest levels in GS I and
II (75mg kg−1; Table 3) exceeded PV. Manganese has no reference
value because it occurs naturally in soil and also because the content in
soil above which it can be hazardous to human health has not yet been
established (CETESB, 2014).

3.2. Correlation of PTEs with iron oxides and magnetic susceptibility

Based on Pearson's correlation coefficients, clay, Fed, Feo, Hm, MS
and the Gb/(Gb+Kt) ratio were positively correlated with PTEs; by

Fig. 4. Scatter plot of observed versus predicted values based on the cross-validation of partial least squares regression (PLSR) and variable importance for projection (VIP) plots of the
target attributes (Series 1). a) Ni as measured in the Vis range, b) VIP plot for Ni as measured in the Vis range, c) Pb as measured in the Vis–NIR range, d) VIP plot for Pb as measured in the
Vis–NIR range, e) Zn as measured in the MIR range and f) VIP plot for Zn as measured in the MIR range.
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exception, Mo and Pb were only correlated with the Gb/(Gb+Kt) ratio
(Table 4). Sand exhibited negative correlation with all elements except
Cr, Mo and Pb. OM had low, positive correlation coefficients (< 0.34)
with Ba, Cu and Zn, whereas pH exhibited low, negative coefficients
(< 0.36) with Ba, Co, Cu and Ni, but positive correlation with Cr
(Table 4). Finally, CEC had low positive correlation coefficients with
Ba, Cu and Zn. The positive correlations of PTE contents with clay, iron
oxides and the Gb/(Gb+Kt) ratio can be ascribed to the presence of
the elements in the active fraction of the soil, which contains an in-
creased number of adsorption sites.

Carbon compounds are rapidly mineralized under tropical condi-
tions. This may have led to the low, widely variable OM contents of the
soils. The little influence of pH and CEC on the spatial distribution of

PTEs was a result of the samples being extracted in a strongly acidic
medium and hence of semi-total contents rather than available con-
centrations being determined. In fact, the acid digestion method used to
extract PTEs failed to dissolve silicate minerals but successfully ex-
tracted adsorbed elements in iron and aluminium oxides (Ure, 1995),
which may be either available to plants or leached to groundwater
(Diaz-Barrientos et al., 1991).

As shown by its increased correlation coefficients relative to Feo and
Gt (Table 4), hematite had a strong influence on PTE contents. All PTEs
examined can be adsorbed to a variable extent by iron oxides depending
on the oxide crystal shape and degree of crystallization; thus, poorly
crystalline oxides with a large specific surface area can be expected to
adsorb metals more readily (Yu et al., 1997). In this study, however, the

Fig. 5. Scatter plot of observed versus predicted values based on the best calibrated models using magnetic susceptibility (MS), sodium dithionite–citrate–bicarbonate-extracted iron (Fed)
and diffuse reflectance spectroscopy (DRS) for the samples in Series 2.
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results may have arisen from the increased Hm contents relative to Gt
and poorly crystalline iron oxides (Camargo et al., 2014). As suggested
by the correlation found between iron oxides and the target elements,
isomorphic substitution of Fe by elements such as Ni, Cr, Co, Cu and Zn
in iron oxides may be an important PTEs source in soils in addition to
adsorption (Melo et al., 2001).

The correlation coefficients for MS were similar to those for Hm and
Fed for the corresponding elements. MS is typically ascribed to ferri-
magnetic iron oxides such as magnetite and maghemite. Our frequency-
dependent magnetic susceptibility (fdMS) values ranged from 10 to
14% (Camargo et al., 2016), which according to Dearing (1999) is
suggestive of a prevalence of superparamagnetic minerals (> 75%).
Although MS can be partly ascribed to lithogenic minerals, it was lar-
gely associated to pedogenic minerals such as maghemite and/or an
intermediate ferrihydrite phase —a precursor of Hm— in our soils be-
cause they originated from sandstone. The intermediate ferrihydrite
phase (ferrimagnetic ferrihydrite) is strongly ferrimagnetic (Michel
et al., 2010) and forms by aging of its ferrihydrite precursor.

The increased specific surface area of ferrimagnetic ferrihydrite
relative to Hm (Michel et al., 2010) resulted in an also increased
number of adsorption sites for PTEs. Martínez et al. (1999) found
heating synthetic ferrihydrite to decrease its specific surface area and
Pb adsorption, and also to cause the formation of Hm and Gt. They had
similar results with pedogenic samples. Maghemite and magnetite have
also been reported to adsorb PTEs (Sidhu et al., 1980; Tuutijärvi et al.,
2009).

The positive correlations between the Gb/(Gb+Kt) ratio and PTE
contents were due to the presence of hydroxyl functional groups on the
Gb surface, which are similar to those found on iron oxides.

3.3. Diffuse reflectance spectroscopy

GS III exhibited lower reflectance than GS I and II in all spectral
ranges (Fig. 2). Vis–NIR spectra exhibited concavities due to absorption
bands typical of iron oxides (480–550 nm and 800–1000 nm) and
kaolinite (2200 nm) (Lindberg and Snyder, 1972; Mathews et al., 1973).
The concavities in the spectra for GS III were more marked than in those
for GS I and II, but the opposite held for the typical concavity of kao-
linite (Fig. 2a and b). These results are consistent with the increased
iron oxide contents and Gb/(Gb+Kt) ratios in GS III (Tables 1 and 2).

The similarity among Vis–NIR spectra confirms that the LabSpec 5000
spectrometer is an effective choice for acquiring spectra over the wa-
velength range 380–2300 nm.

The MIR spectra (Fig. 2c) also exhibited the typical concavities of
gibbsite (3619 and 3532 cm−1), kaolinite (3695 cm−1) and quartz
(1870, 1790, 780 cm−1). The concavities for the latter two minerals
were less marked in GS III than they were in GS I and II, which is
consistent with the increased sand contents and Gb/(Gb+Kt) ratios of
GS III (Table 2).

3.4. Multiple linear regression (MLR) and partial least-squares regression
(PLSR)

The high correlation of the soil attributes clay, MS, Hm, Fed and Feo
(Table 4) with the Ba, Co, Cu, Mn, Ni and Zn contents allows the former
to be used as PTEs predictors (Table 5). The Gb/(Gb+Kt) ratio, though
also correlated, was not included among the predictors owing to the
high cost of its determination. Stepwise MLR calculations showed MS
and Fed to be the best individual PTEs predictors; in fact, they resulted
in no significant increase in R2 when two or more attributes in com-
bination were considered. The R2 values for the MS-calibrated models
for Ba, Co, Mn, Ni and Zn prediction were 0.88, 0.85, 0.66, 0.73 and
0.55, respectively. These are promising results since MS measurements
are inexpensive, expeditious and non-destructive, so they can be used to
predict PTEs contents in large numbers of samples and hence to map
large areas at a detailed level. The Fed-calibrated model for Cu pre-
diction —the best for this element— had R2= 0.58 (Table 5).

Table 6 show the cross-validation statistics of the models for pre-
dicting soil attributes as obtained by PLSR in the Vis, Vis–NIR and MIR
range, and Figs. 3 and 4 the cross-validation plots for the best calibrated
models. The best MIR-calibrated models (viz., those with the highest
R2
adj and RPD values, and lowest RMSE and SDE) were those for Ba, Co,

Mn and Zn. RPD values exceeding 2.0 —which are deemed excellent
(Chang et al., 2001)— were obtained for Ba, Co and Mn, which were
thus predicted with a high accuracy. On the other hand, the RPD value
for Zn, 1.3, indicates inaccurate calibration (Chang et al., 2001). The
best Vis–NIR-calibrated model was that for Cu (from spectra acquired
with the LabSpec 5000 spectrometer), whereas the best Vis-calibrated
model was that for Ni (from spectra obtained with the Lambda 950
spectrometer). However, the RPD value for Cu, 1.8, suggests that this

Table 7
Fitting of model parameters to the experimental semivariograms.

Attribute Model C0
a C0+ C1

b C0/(C0+ C1)c (%) Range (m) R2d RSSe

Baobs Gaussian 620 9270 7 1021 0.97 4,122,023
BaDRS Gaussian 670 4217 16 989 0.93 1,582,550
BaMS Gaussian 780 2918 27 1148 0.94 575,928
Coobs Spherical 0.41 5.87 7 1386 0.93 3.35
CoDRS Spherical 0.34 4.16 8 1166 0.94 1.33
CoMS Spherical 0.87 3.86 23 1290 0.92 1.10
Cuobs Gaussian 0.08 0.30 27 892 0.95 4.5E-03
CuDRS Gaussian 0.15 0.55 27 1125 0.93 2.2 E-02
CuMS Gaussian 0.000618 0.001816 34 1163 0.95 1.25E-7
Mnobs Spherical 2000 33,960 6 928 0.95 6.23E+7
MnDRS Spherical 1000 27,740 4 1051 0.94 6.12E+7
MnMS Spherical 2650 15,310 17 1392 0.95 1.05E+7
Niobs Spherical 27 66 41 1257 0.92 200
NiDRS Spherical 14 41 34 898 0.90 103
NiMS Spherical 27 117 23 1271 0.89 1408
Znobs Spherical 51 218 23 1364 0.95 2248
ZnDRS Spherical 35 195 18 1093 0.98 659
ZnMS Spherical 28 156 18 1367 0.95 1367

a Nugget effect.
b Sill.
c Degree of spatial dependence (moderate with 25–75%, weak with>75%, strong with ≤25%).
d Coefficient of determination.
e Residual sum of squares.
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Fig. 6. Spatial distribution maps of observed (obs), magnetic susceptibility-predicted (predMS) and diffuse reflectance spectroscopy-predicted (predDRS) values for the target PTEs.
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element can be more accurately predicted by using a different cali-
bration strategy (Chang et al., 2001). Finally, the RPD value for Ni was
2.0.

Wu et al. (2007) used 61 km2 of Agrudalf soils to calibrate Vis–NIR-
based prediction models; their RPD values for Zn and Ni were similar to
ours, but those for Co and Cu were lower.

As can be seen from the VIP plots for Ba, Co and Mn in Figs. 3 and 4,
the strongest peaks fell in the spectral region of Kt and Gb (viz.,
2700–2900 nm or 3695–3532 cm−1), which confirms the influence of
the Gb/(Gb+Kt) ratio on the contents in these elements and explains
why calibration in the MIR range led to better results. The strongest
peaks in the VIP plots for Cu and Ni fell in the range 350–550 nm and
can be assigned to iron oxides.

3.5. Prediction and spatial variability of PTEs

The MLR-calibrated prediction models based on MS (1, 4, 9, 11 and
14) and Fed (7) (Table 5), and the best PLSR-calibrated models (in-
creased RPD values), were used to predict the Ba, Co, Cu, Mn, Ni and Zn
contents for the data points of Series 2 (Fig. 5). The best predictions for
Co, Ni and Zn were obtained with the MS-based models (R2 was 0.85,
0.66, and 0.87, respectively). On the other hand, the best predictions
for Ba, Cu and Mn were those provided by the DRS-based models (R2

was 0.73, 0.18 and 0.91, respectively) (Fig. 5). The predicted and ob-
served PTE contents were subjected to geostatistical analysis (Table 7).
All PTEs values, whether predicted or experimental, exhibited spatial
dependence.

The maps constructed by using ordinary kriging showed the spatial
distribution pattern for the observed PTE values at the study site
(Figs. 6 and 7) to be similar to those for the maps based on iron oxides

and MS. Camargo et al. (2015, 2016) previously found the greatest, iron
oxide and MS values in GS III. These authors found more marked spatial
variation of iron oxides and MS in this geomorphic surface, which was
also the case with PTEs (largest number of content classes) in this work.
The fact that GS III is an unstable area may thus have led to greater
variations in the target attributes; thus, according to Daniels et al.
(1970) and Lepsch et al. (1977), soils developing on newer surfaces
exhibit more marked differences in their attributes. The QRV and PV
values for Ba, Ni and Zn exceeded the limit in GS III, but the QRV values
fell under the limit in GS I. As shown by these results, properly un-
derstanding the presence of PTEs at a local scale requires considering
spatial variability in iron oxides.

The spatial distribution maps for MLR- and PLSR-predicted values
were similar to those for the observed Ba, Co, and Zn contents. The
maps for Mn MRL-predicted values exhibited overestimated areas in GS
III, and so did the MLR- and PLSR-predicted maps for Ni. The differ-
ences arose from error propagation during ordinary kriging calibration,
prediction and interpolation (Burrough & McDonnell, 1998). This out-
come is consistent with the visual difference between maps based on
observed and predicted values. However, it should be emphasized that
soil mapping is rarely error-free (Brown and Heuvelink, 2005; Nol
et al., 2010); also, overestimated values from calibrated models fall in
the same region as the greatest observed values. Therefore, though less
accurate, the calibrated models for Mn and Ni are still useful to identify
areas with potential problems.

Spectroscopy has recently been used for PTE prediction and using
iron oxides confirms its effectiveness for mapping the elements from the
same MS-based predictions as the PTEs. Although the calibrated models
based on Vis–NIR data had smaller RPD values than those based on MIR
data, they were still acceptable for most of the target PTEs. Thus,

Fig. 7. Spatial distribution maps of observed (obs), magnetic susceptibility-predicted (predMS) and diffuse reflectance spectroscopy-predicted (predDRS) values for the target PTEs.
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inexpensive portable equipment can provide acceptable predictions and
may further facilitate the acquisition of samples with a view to mapping
large areas at a detailed level.

The sampling scheme used here was effective in capturing spatial
variability in iron oxides (Camargo et al., 2014, 2015) and hence in
PTEs. Understanding the influence of geomorphic surfaces on spatial
variability in iron oxides and PTEs may be useful to resample the ele-
ments concerned in follow-up studies (e.g., after remedial measures
have been applied). In this specific case, an increased number of sam-
ples would be needed at locations of increased spatial variability.

The PTE prediction methods used in this study have a low cost/
benefit ratio and may be useful to gather information for pollution risk
assessment and remediation. The predictors and calibration strategies
used may require adaptation in areas with mineralogically different
soils and/or other types of landscape.

4. Conclusions

The mapping of areas can be improved by using magnetic suscept-
ibility and diffuse reflectance spectroscopy to predict PTEs contents.
The prediction models for Ba, Co, Mn, Ni, and Zn were acceptably ca-
librated from magnetic susceptibility (MS) and diffuse reflectance
spectroscopy (DRS) measurements. Contents in Ba and Mn were better
predicted by DRS-calibrated models, and those in Co, Ni and Zn by MS-
calibrated models. The correlation between PTE and free iron contents,
as well as their spatial pattern, confirms the usefulness of these alter-
native methods for predicting the contents in potentially toxic elements
of soil.
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