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For spatially bounded free fields, the Bekenstein bound states that the specific entropy satisfies the

inequality S
E � 2�R, where R stands for the radius of the smallest sphere that circumscribes the system.

The validity of the Bekenstein bound in the asymptotically free side of the Euclidean ð�’4Þd scalar field

theory is investigated. We consider the system in thermal equilibrium with a reservoir at temperature ��1

and defined in a compact spatial region without boundaries. Using the effective potential, we discuss the

thermodynamic of the model. For low and high temperatures the system presents a condensate. We present

the renormalized mean energy E and entropy S for the system and show in which situations the specific

entropy satisfies the quantum bound.
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I. INTRODUCTION

There have been a lot of activities discussing classical
and quantum fields in the presence of macroscopic bounda-
ries. These subjects raise many interesting questions. A
basic question that has been discussed in this scenario,
when quantum fields interact with boundaries, is about
the issue that these systems may be subjected to certain
fundamental bounds. ’t Hooft [1] and Susskind [2], com-
bining quantum mechanics and gravity, introduced the
holographic entropy bound S � �c3R2=@G [3]. This holo-
graphic bound relates information not with the volume but
with the area of surfaces. Another bound is the Bekenstein
bound, which relates the entropy S and the mean energy E
of a quantum system with the size of the boundaries that
confine the fields. It is given by S � 2�ER=@c, where R
stands for the radius of the smallest sphere that circum-
scribes the system [4–8].

The aim of this paper is to investigate the validity of the
Bekenstein bound in systems defined in a compact spatial
region without boundaries, described by asymptotically
free theories. We study the ordinary Euclidean ð�’4Þd
massless scalar field theory, with a negative sign of the
coupling constant [9–11]. This field theory is renormaliz-
able in a four-dimensional space-time, asymptotically free,
and has a nontrivial vacuum expectation value.

Studying the ð�’pÞd self-interacting massless scalar
field theory in the strong-coupling regime at finite tem-
perature, and also assuming that the field is confined in a
compact spatial region, a generalization for the Bekenstein
bound was obtained by Aparicio Alcalde et al [12]. The
basic problem that arises in theories with nonlinear fields is
the possibility of nonlinear interactions changing the en-

ergy spectrum of the system invalidating the quantum
bound. Previous works studying the bound in weakly
coupled fields can be found in Refs. [13,14]. Bekenstein
and Guedelman studied the massless charged self-
interacting scalar field in a box and proved that in this
case nonlinearity does not violate the bound on the specific
entropy. In Ref. [12] it was assumed that the fields are
defined in a simply connected bounded region, i.e., a
hypercube of size L, where the scalar field satisfies
Dirichlet boundary conditions. Working in the strong-
coupling regime of the ð�’pÞd field theory and making
use of the strong-coupling expansion [15–19], the renor-
malized mean energy and the entropy for the system up to

the order ��ð2=pÞ were found, presenting an analytic proof
that the specific entropy also satisfies in some situations a
quantum bound. Considering the low temperature behavior
of the thermodynamic quantities of the system, it was
shown that for negative renormalized zero-point energy,
the quantum bound can be invalidated. Note that a still
open question is how the sign of the renormalized zero-
point energy of free fields described by Gaussian func-
tional integrals depends on the topology, dimensionality of
the space-time, shape of bounding geometry, or other
physical properties of the system [20–23]. For complete
reviews discussing the Casimir effect [24], see, for ex-
ample, Refs. [25–29].
The purpose of this article is to investigate another

physical situation that has not been discussed in the litera-
ture. We should note that a step that remains to be derived
is the validity of the bound for the case of interacting field
theory described by asymptotically free models [30–34], at
least up to some order of perturbation theory. This situation
of a deconfined field theory with asymptotically free be-
havior, defined in a small compact region of space, may
occur in QCD in the confinement-deconfinement phase
transition at high temperatures or if usual matter is strongly
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compressed [35–37]. For a complete review of the subject,
see Ref. [38]. In ultrarelativistic heavy ion collisions we
expect that the plasma of quarks and gluons can be pro-
duced, just after the collision, and that hot and compressed
nuclear matter is confined in a small region of space. No
practical method had been developed to solve QCD, and
therefore the basic question we have presented here re-
mains unanswered, unless we try to describe a simpler
model that develops asymptotic freedom for some values
of the coupling constant.

In order to investigate the Bekenstein bound in this
asymptotically free theory, we assume that the scalar field
is confined in a bounded region. Working in the weak-
coupling perturbative expansion with the ð�’4Þd, we as-
sume periodic boundary conditions in all spatial directions,
in order to maintain translational invariance of the model.
This same approach was used in Ref. [39]. For papers
studying nontranslational invariant systems and analyzing
the divergences of the theory, see, for example, Refs. [40–
46]. We also assume that the system is in thermal equilib-
rium with a reservoir and investigate the asymptotic free
side of the ð�’4Þd [9,47–51]. In order to study the exis-
tence of a quantum bound on the specific entropy, we study
the behavior of the specific entropy using the effective
action method.

We would like to point out that the theory with a
negative coupling constant develops a condensate as was
shown by Parisi [52]. In the self-interaction ð�’4Þd field
theory, it is possible to find the vacuum energy Eð�Þ. This
quantity is given by the sum of all vacuum-to-vacuum
connected diagrams. In the � complex plane, the function
Eð�Þ is analytic for Reð�Þ> 0 and the discontinuity on the
negative real axis is related to the mean life of the vacuum.
For a system with N particles, let us define ENð�Þ as the
energy of such state. For negative �, there are collapsed
states of negative energy. Defining maxENð�Þ ¼ EB, the
probability of the vacuum to decay is e�EB . The particles
on the collapsed state will be described by a classical field
’0.

The organization of the paper is as follows: In Sec. II we
study the effective potential of the theory at the one-loop
level. Because of the boundary conditions imposed on the
field, there is a topological generation of mass. The topo-
logical squared mass depends on the ratio � ¼ �=L, and its
sign is critical to the profile of the effective potential. In
Sec. III we present our results of the thermodynamic
functions and study the validity of the Bekenstein bound
in the model. To simplify the calculations we assume the
units to be such that @ ¼ c ¼ kB ¼ 1.

II. THE EFFECTIVE POTENTIAL AT THE
ONE-LOOP LEVEL

Let us consider a neutral scalar field with a ð�’4Þ self-
interaction, defined in a d-dimensional Minkowski space-
time. The generating functional of all vacuum expectation

values of time-ordered products of the theory has a
Euclidean counterpart, that is the generating functional of
complete Schwinger functions. The ð�’4Þd Euclidean the-
ory is defined by these Euclidean Green’s functions. The
Euclidean generating functional ZðhÞ is defined by the
following functional integral [53,54]:

ZðhÞ ¼
Z
½d’� exp

�
�S0 � SI þ

Z
ddxhðxÞ’ðxÞ

�
; (1)

where the action that describes a free scalar field is given
by

S0ð’Þ ¼
Z

ddx

�
1

2
ð@’Þ2 þ 1

2
m2

0’
2

�
: (2)

The interacting part, defined by the non-Gaussian contri-
bution, is given by the following term in the action:

SIð’Þ ¼
Z

ddx
�

4!
’4ðxÞ: (3)

In Eq. (1), ½d’� is formally given by ½d’� ¼ Q
xd’ðxÞ, and

m2
0 and � are the bare squared mass and coupling constant,

respectively. Finally, hðxÞ is a smooth function that is
introduced to generate the Schwinger functions of the
theory by functional derivatives.
We are assuming a spatially bounded system in equilib-

rium with a thermal reservoir at temperature ��1. As-
suming that the coupling constant is a small parameter,
the weak-coupling expansion can be used to compute the
partition function defined by Zð�;�; hÞjh¼0, where h is an
external source and we are defining the volume of the ðd�
1Þ manifold as Vd�1 � �. From the partition function we
define the free energy of the system, given by Fð�;�Þ ¼
� 1

� lnZð�;�; hÞjh¼0. This quantity can be used to derive

the mean energy Eð�;�Þ, defined as

Eð�;�Þ ¼ � @

@�
lnZð�;�; hÞjh¼0; (4)

and the canonical entropy Sð�;�Þ of the system is given
by

Sð�;�Þ ¼
�
1� �

@

@�

�
lnZð�;�; hÞjh¼0: (5)

Since the scalar theory with the negative coupling con-
stant develops a condensate, it is convenient to work with
the effective potential of the system. As was stressed by
Bender et al. [10], nonperturbative techniques must be used
to find the true vacuum of the system. Therefore, let us
study first the effective potential at the one-loop level
associated to a self-interacting scalar field defined in a
d-dimensional Euclidean space.
Let us consider that the system is in thermal equilibrium

with a reservoir at temperature ��1. Therefore, we assume
the Kubo-Martin-Schwinger condition [55–58]. We will
work with a massless scalar field and assume d ¼ 4, and
in order to simplify the calculations we impose periodic
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boundary conditions for the field in all three spatial direc-
tions, with compactified lengths L1, L2, and L3. The
Euclidean effective potential can be written as

Veffð�;�;L1; L2; L3Þ ¼ �4

3
�2g�4 þUþ counterterms

þ 1

��

X1
s¼1

ð�1Þsþ1

2s

� gs�2sZ4ð2s; a1; a2; a3; a4Þ; (6)

where we have defined the quantities � ¼ ’=�, g ¼
�=8�2, a�1

i ¼ �Li (i ¼ 1, 2, 3), a�1
4 ¼ ��, � ¼

L1L2L3, and finally Z4ð2s; a1; . . . ; a4Þ is the Epstein zeta
function [20]. Note that we have introduced a mass pa-
rameter � in order to keep the Epstein zeta function, Z4, a
dimensionless quantity.

The first contribution to the effective potential given in
Eq. (6) is the classical potential. The second contribution
Uð�;L1; L2; L3Þ, is given by

Uð�;L1; L2; L3Þ ¼ 1

2��

X1;

n1;...;n4¼�1

� ln

��
2�n1
L1

�
2 þ

�
2�n2
L2

�
2 þ

�
2�n3
L3

�
2

þ
�
2�n4
�

�
2
�
: (7)

The prime that appears in Eq. (7) indicates that the term for
which all ni ¼ 0must be omitted.We can rewrite Eq. (7) as

Uð�;L1; L2; L3Þ ¼ 1

��

X1;

n1;...;n3¼�1
ð�� �nþ lnð1� e�2�� �nÞÞ

þ 1

��
J1; (8)

where we are defining the quantity �nðL1; L2; L3Þ and the
(infinite) constant J1 as

�n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
n1
L1

�
2 þ

�
n2
L2

�
2 þ

�
n3
L3

�
2

s
; (9)

and

J1 ¼
X1;

n1;...;n3¼�1

X1;

m¼�1
lnð1þ ð2�mÞ2Þ

� X1;

n1;...;n3¼�1
ð1þ 2 lnð1� e�1ÞÞ: (10)

The last term of the Eq. (6) is explicitly the one-loop
correction to the effective potential, defined in terms of
the homogeneous Epstein zeta function Zpð2s; a1; . . . ; apÞ
given in Ref. [20] by

Zpð2s; a1; . . . ; apÞ ¼
X1;

n1;...;np¼�1
ðða1n1Þ2 þ . . .

þ ðapnpÞ2Þ�s: (11)

The summation give by Eq. (11) is convergent for s > p=2.
The homogeneous Epstein zeta function has an analytic
extension to the complex plane s 2 C, except for a pole in
s ¼ p=2. Since the unique polar contribution occurs for the
case in s ¼ 2, the theory can be renormalized using only a
unique counterterm, introduced to renormalize the cou-
pling constant of the theory. Because we are assuming
periodic boundary conditions for the field in all spatial
directions, it appears as a topological generation of mass,
coming from the self-energy Feynman diagram [59–61].
The topological mass is defined in terms of the first renor-
malization condition given by

@2Veff

@�2

���������¼0
¼ m2

T�
2: (12)

Using the Epstein zeta function, the topological squared
mass m2

T can be written as

m2
T ¼ g

�2��
Z4ð2; a1; a2; a3; a4Þ: (13)

The above result was obtained also by Elizalde and Kirsten
[62]. As was discussed by these authors, the topological
squared mass depends on the values of the compactified
lengths and the temperature. For simplicity wewill call this
quantity a topological mass. The next step is to study the
two cases m2

T > 0 and m2
T < 0 separately.

A. The positive topological squared mass, i.e., m2
T > 0

First, let us write the effective potential in the form

Veffð�;�; L1; L2; L3Þ

¼ �2 m
2
T

2
�2 þ�4

3
�2g�4 þ�4 ��

4!
�4 þU

þ 1

��

X1
s¼2

ð�1Þsþ1

2s
gs�2sZ4ð2s; a1; a2; a3; a4Þ: (14)

We begin studying the case m2
T > 0. We will consider first

particular values of the compactified lengths and tempera-
ture in such a way that the analytic extension of the
homogeneous Epstein zeta function Z4ð2; a1; . . . ; a4Þ takes
only negative values. Therefore, we consider that the cou-
pling constant is negative, i.e., g ¼ �jgj< 0. In this case
we will have that the topological squared mass is given by

m2
T ¼ � jgj

�2��
Z4ð2; a1; a2; a3; a4Þ: (15)

Therefore, we get a physical mass of a scalar particle
confined inside our finite domain. The second renormal-
ization condition, which gives a finite coupling constant, is
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@4Veff

@�4

���������¼0
¼ 8�2g�4: (16)

Using Eq. (16) in Eq. (14) we can find the renormalized
effective potential. In this case [for negative coupling
constant, Z4ð2; a1; . . . ; a4Þ taking only negative values
and hence m2

T > 0] it can be written as

VR
effð�;�; L1; L2; L3Þ

¼ �2 m
2
T

2
�2 ��4

3
�2jgj�4 þU

� 1

��

X1
s¼3

jgjs
2s

�2sZ4ð2s; a1; a2; a3; a4Þ: (17)

The renormalized effective potential is presented in Fig. 1.
It has a local metastable minimum at the origin and it is not
bounded from below. This is an expected result since the
model is the asymptotically free side of the Euclidean
ð�’4Þd scalar field theory.

Next, let us calculate the specific entropy S=E, where the
mean energy E and the entropy S are given by Eqs. (4) and
(5). First we should perform and inverse Legendre trans-
form in order to obtain lnZð�;�; hÞ. Note that these ther-
modynamics functions are calculated in the absence of the
source, i.e., h ¼ 0. In terms of the effective potential, we
have to find the stationary point of the renormalized effec-
tive potential, �0, defined by the equation

@VR
eff

@�

���������¼�0

¼ 0: (18)

Substituting Eq. (17) in Eq. (18) we obtain that �0 must
satisfy

�2m2
T�0 � 4

3
�4�2jgj�3

0

� 1

��

X1
s¼3

jgjs�2s�1
0 Z4ð2s; a1; a2; a3; a4Þ ¼ 0: (19)

From Fig. 1 we see that Eq. (19) has three solutions.
Because we are interested in the configuration which is
stable under small external perturbations, we take the
solution with the local minimum of the effective potential,
i.e., �0 ¼ 0. Performing the Legendre transform when the
effective potential reaches its metastable stationary point,
we get that lnZð�;�Þ is given by

lnZð�;�Þ ¼ lnZð�;�; hÞjh¼0

¼ �ð��ÞVR
effð�;�;L1; L2; L3Þj�¼�0¼0: (20)

Substituting Eqs. (8) and (17) in Eq. (20) we get

lnZð�;�Þ ¼ � X1;

n1;...;n3¼�1
ð�� �nþ lnð1� e�2�� �nÞÞ � J1:

(21)

The mean energy Eð�;�Þ and the canonical entropy
Sð�;�Þ of the system in equilibrium with a reservoir can
be derived using Eqs. (4), (5), and (21). We have

Eð�;�Þ ¼ X1;

n1;...;n3¼�1

�
�n�þ 2 �n�

e2 �n�� � 1

�
(22)

and

Sð�;�Þ ¼ X1;

n1;...;n3¼�1

�
2 �n��

e2 �n�� � 1
� lnð1� e�2 �n��Þ

�
� J1:

(23)

Note that we have an infinite constant in the definition of
the canonical entropy. This ambiguity will be circum-
vented later using the third law of thermodynamics and
assuming the continuity of the entropy. For simplicity we
will assume that the lengths of compactification of the
spacial coordinates are all equal, Li ¼ L, for i ¼ 1, 2, 3,
and we will define the dimensionless variable � ¼ �=L. In
this case we can write the mean energy and the canonical
entropy as

Eð�Þ ¼ ð"ðrÞ þ Pð�ÞÞ=L (24)

and

Sð�Þ ¼ �Pð�Þ þ Rð�Þ þ cte: (25)

In Eq. (24) the quantity "ðrÞ is defined by

"ðrÞ ¼ X1;

n1;...;n3¼�1
~n�; (26)

where the variable ~n is defined as ~n ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn1Þ2 þ ðn2Þ2 þ ðn3Þ2
p

. The term "ðrÞ is just the renormal-

Veff

FIG. 1 (color online). The effective potential for the case
where m2

T > 0.
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ized Casimir energy of the massless scalar field where we
impose periodic boundary conditions in the three spatial

coordinates. In Ref. [20] it was shown that "ðrÞ ¼ �0:81.
The positive functions Pð�Þ and Rð�Þ are defined by

Pð�Þ ¼ X1;

n1;...;n3¼�1

�
2~n�

e2~n�� � 1

�
(27)

and

Rð�Þ ¼ � X1;

n1;...;n3¼�1
lnð1� e�2~n��Þ: (28)

Note that where m2
T > 0 the situation is satisfied only for

some specific values of the ratio between� and L, given by
�. Using the analytic extensions presented in Ref. [62], we
can write the topological squared mass as

m2
T ¼ �jgj

L2

f1ð�Þ
�

; (29)

where the function f1ð�Þ is the analytic extension of
Z4ð2s; 1; 1; 1; ��1Þ at s ¼ 1 and is given by

f1ð�Þ ¼ a�þ �2

3
�2 þ Kð�Þ: (30)

The coefficient a and the function Kð�Þ in Eq. (30) are,
respectively, given by

a ¼ 2��þ 2� ln
1

4�
þ �2

3

þ 8�
X1

n;n1¼1

�
n1
n

�
1=2

K1=2ð2�nn1Þ

þ 4��
X1
n¼1

X1;

n1;n2;n3¼�1
K0ð2�n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 þ n22

q
Þ (31)

and

Kð�Þ ¼ 4��3=2
X1
n¼1

X1;

n1;n2;n3¼�1

�
~n

n

��1=2
K�1=2ð2�n~n�Þ:

(32)

The functions Krð�Þ that appear in Eqs. (31) and (32) are
the Kelvin functions [63]. In Fig. 2 the behavior of the
topological squared mass is presented. There are three
regions of values of � where the topological squared
mass has a defined sign. They are given, respectively, by
I ¼ ð0; �1Þ, II ¼ ð�1; �2Þ, and III ¼ ð�2;1Þ, where �1 ¼
0:25 526 and �2 ¼ 2:6776. In the cases I and III the topo-
logical squared mass is negative, while in II it is positive.
Therefore, only the situation II is consistent. In this case
the mean energy and the canonical entropy are given by

EIIð�Þ ¼ ð"ðrÞ þ Pð�ÞÞ=L (33)

and

SIIð�Þ ¼ �Pð�Þ þ Rð�Þ þ cteII: (34)

B. The negative topological squared mass, i.e., m2
T < 0

Now let us consider the case where the values of the
compactified lengths and temperature give us to the situ-
ation where the analytic extension of the homogeneous
Epstein zeta function Z4ð2; a1; . . . ; a4Þ has only positive
values. In this case the topological squared mass is a
negative quantity, since we are considering that the cou-
pling constant is negative g ¼ �jgj< 0. In this case we
have to impose the second renormalization condition of the
effective potential in an arbitrary point � ¼ M different
from zero. If we take M ¼ 0, the effective potential is not
only not bounded from below, but also it will not have any
local minimum, and in this case the system is unstable
under small external perturbations. The second renormal-
ization condition can be written as

@4Veff

@�4

���������¼M
¼ 8�2g�4: (35)

Using Eqs. (14) and (35) we get the renormalized effective
potential

VR
effð�;�;L1; L2; L3Þ

¼ �2 m
2
T

2
�2 ��4

3
�2jgj�4 þU

� 1

��

X1
s¼3

	ð�; sÞZ4ð2s; a1; a2; a3; a4Þ: (36)

In Eq. (36) the quantity U is defined in Eq. (8) and 	 is
given by

	ð�; sÞ ¼ jgjs
�
�2s

2s
��4

4!
ð2s� 1Þð2s� 2Þð2s� 3ÞM2s�4

�
:

(37)

The renormalized effective potential Eq. (36) can be re-

0.5 1.0 1.5 2.0 2.5 3.0 3.5

mT 2

FIG. 2 (color online). Behavior of the m2
T with �.
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written as

VR
effð�;�; L1; L2; L3Þ ¼ ��2m2

T

2
Fð�;�;L1; L2; L3Þ þU;

(38)

where we have defined the function Fð�;�; L1; L2; L3Þ as

Fð�;�;L1; L2; L3Þ ¼ ��2 þ A�4 � X1
s¼3

Cs�
2s: (39)

The coefficientsCs, independent of the field�, are defined,
for s ¼ 3; 4; . . . , by

Cs ¼ jgjs�1

s

Z4ð2s; aÞ
Z4ð2; aÞ ; (40)

and the coefficient A is defined by the expression

A ¼ Ao þ 1

4!

X1
s¼3

Csð2sÞð2s� 1Þð2s� 2Þð2s� 3ÞM2s�4

(41)

where

Ao ¼ � 2���4�2

3Z4ð2; aÞ : (42)

We have denoted for simplicity Z4ð2s; aÞ ¼
Z4ð2s; a1; a2; a3; a4Þ. Note that the coefficients Cs are de-
fined in the domain of convergence of Z4ð2s; aÞ, i.e., s ¼
3; 4; . . . ; therefore, we have that Z4ð2s; aÞ> 0 and as we
are considering the case where Z4ð2; aÞ> 0, the coeffi-
cients Cs are positive. If we take the second renormaliza-
tion condition in a point M ¼ 0, the coefficient of the
fourth power of the field in Eq. (39) would be negative.
In this case it is not possible to find a local minimum of the
effective potential. One way to circumvent this situation is
to choose M where the coefficient A assumes a positive
value. In Fig. 3 the behavior of the effective potential for
different values of M, and consequently, for different val-
ues of A, is presented for small values of the field � and of
the coupling constant. This behavior depends on the first
terms of Eq. (39). In this approximation we are taking into
account only the first three terms in Eq. (39), where we are
denoting the third coefficient C ¼ C3 > 0, i.e., we are
taking

Fð�;�;L1; L2; L3Þ ¼ ��2 þ A�4 � C�6: (43)

From Fig. 3 we show that the only situation where the
effective potential has a local minimum and the theory is
metastable is by takingMwhere A is positive and A2 > 3C.
This case is the only one where we can find a local

minimum of the effective potential when the topological
squared mass satisfies the inequality m2

T < 0. This mini-
mum is localized outside the origin and the system devel-
ops a condensate. We conclude that we have to take M in
such a way that A >

ffiffiffiffiffiffiffiffiffi
3C3

p
> 0. In terms ofM this inequal-

ity can be written as

� 2���4�2

3Z4ð2; aÞ þ 1

4!

X1
s¼3

Csð2sÞð2s� 1Þð2s� 2Þð2s� 3Þ

�M2s�4 >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgj2Z4ð6; aÞ
Z4ð2; aÞ

s
: (44)

We will show later that for a given coupling constant and
volume of the compact domain, we can always findM that
satisfies Eq. (44) for any temperature. We can make an
approximation in the series given by Eq. (41) taking only
the term s ¼ 3. The coefficient A would be

A ¼ Ao þ 15CM2: (45)

From now on we will consider that the lengths of our
compact domain are the same, L1 ¼ L2 ¼ L3 ¼ L, and
we will define � ¼ �=L. It is easy to show that

Z4ð2s; aÞ ¼ ð�LÞ2sfsð�Þ; (46)

where the function fsð�Þ is defined by

fsð�Þ ¼ Z4ð2s; 1; 1; 1; ��1Þ: (47)

Considering Eqs. (45) and (46) the condition Eq. (44) can
be rewritten as

M2ð�LÞ2 > 2�2

15jgj2
�

f3ð�Þ þ
1

5jgj

ffiffiffiffiffiffiffiffiffiffiffi
f1ð�Þ
f3ð�Þ

s
: (48)

From Fig. 4 we see that the functions �=f3ð�Þ and

Veff

A2 3C

A2 3C

A2 3C

FIG. 3 (color online). Behavior of the effective potential in the
case m2

T < 0 for different values of A.
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f1ð�Þ=f3ð�Þ are bounded from above and then we always
can find a value of M that satisfies Eq. (48). Note that
because we are considering a negative topological squared
mass, we are taking values of � such that f1ð�Þ is positive
and as f3ð�Þ is always positive. Consequently, we are able
to take the square root of f1ð�Þ=f3ð�Þ in the domain where
we are working now. Defining v1 and v2 as upper bounds

of the functions �=f3ð�Þ and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ð�Þ=f3ð�Þ

p
, respectively,

Eq. (48) can be satisfied by taking

M2ð�LÞ2 ¼ 2�2v1

15jgj2 þ
v2

5jgj : (49)

Using Eqs. (43) and (45), we can find the local minimum
of the renormalized effective potential �0 given by

�2
0 ¼

A� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � 3C

p

3C
: (50)

It is better to define � ¼ �2
0ð�LÞ2. We have

�ð�Þ ¼ 2�2v1

3jgj2 þ v2

jgj �
2�2

3jgj2
�

f3ð�Þ
� 1

3

�
4�2

jgj2
�

�

f3ð�Þ
�
2 � 12�2

jgj2
�
2�2v1

15jgj2 þ
v2

5jgj
�

�

f3ð�Þ
þ

�
2�2v1

jgj2 þ 3v2

jgj
�
2 � 9

jgj2
f1ð�Þ
f3ð�Þ

�
1=2

: (51)

Considering the parameters v1, v2, and g as constants, we
analyzed the behavior of � with respect to �. Performing
the Legendre transform in the metastable stationary point
of the renormalized effective potential, we get

lnZð�;�Þ ¼ lnZð�;�; hÞjh¼0

¼ �ð��ÞVR
effð�;�;L1; L2; L3Þj�¼�0

: (52)

Substituting Eqs. (8), (38), (43), (45), and (49), in Eq. (52)

we have

lnZð�Þ ¼ jgj
2
f1ð�Þ�ð�Þ

þ jgj
2

�
2�2�

3
�

�
2�2v1

3
þ jgjv2

�
f3ð�Þ

�
�2ð�Þ

þ jgj4
3

f3ð�Þ�3ð�Þ

� X1;

n1;...;n3¼�1
ð~n��þ lnð1� e�2~n��ÞÞ � J1: (53)

Using Eqs. (4), (5), and (53) we obtain the mean energy

Eð�Þ ¼ ð"ðrÞ þ Pð�Þ þ 
ð�ÞÞ=L (54)

and the canonical entropy

Sð�Þ ¼ �Pð�Þ þ Rð�Þ þ c ð�Þ þ cte; (55)

where the functions "ðrÞ, Pð�Þ, and Rð�Þ are defined in
Eqs. (26)–(28), respectively. The functions 
ð�Þ and c ð�Þ
are given by the expressions


ð�Þ ¼ � jgj
2

�
f01ð�Þ�ð�Þ

þ
�
2�2

3
�

�
2�v1

3
þ jgjv2

�
f03ð�Þ

�
�2ð�Þ

þ jgj2
3

f03ð�Þ�3ð�Þ
�

(56)

and

c ð�Þ ¼ jgj
2

�
g1ð�Þ�ð�Þ þ

�
2�v1

3
þ jgjv2

�
g3ð�Þ�2ð�Þ

þ jgj2
3

g3ð�Þ�3ð�Þ
�
: (57)

1 2 3 4 5

0.05

0.10

0.15

f3

0.5 1.0 1.5 2.0

2

0

2

4

6

f1

f3

FIG. 4 (color online). The functions �=f3ð�Þ and f1ð�Þ=f3ð�Þ.
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Since we are considering here that the topological squared
mass is negative, these results are valid only in the intervals
I ¼ ð0; �1Þ and III ¼ ð�2;1Þ of the variable �. These re-
sults can be expressed in the following way. We have

EðI;IIIÞð�Þ ¼ ð"ðrÞ þ Pð�Þ þ 
ð�ÞÞ=L (58)

and

SðI;IIIÞð�Þ ¼ �Pð�Þ þ Rð�Þ þ c ð�Þ þ cteðI;IIIÞ: (59)

In Eqs. (58) and (59) we see explicitly that the form of the
mean energy is the same in regions I and III, but the form of
the canonical entropy is different in each of these intervals.
This discrepancy is due to certain constants, cteI and cteIII,
that will be fixed with the help of the third law of thermo-
dynamics and assuming the continuity of the entropy.

III. ANALYSIS OF THE RESULTS

We have found that due to the boundary conditions
imposed on the field and the presence of a thermal reser-
voir, there is a topological and thermal generation on mass.
This topological mass depends on the lengths of the com-
pactification of the spatial coordinates and on the tempera-
ture. It was shown that the sign of the topological squared
mass is crucial to determine the profile of the effective
potential. Then we obtained two different physical situ-
ations: the case where the topological squared mass is
positive and the case where it is negative. We have shown
that when the topological squared mass is negative the
system develops a condensate. In this case, the minimum
of the effective potential is not localized at the origin and it
is given by the function �ð�Þ defined in Eq. (51). We
would like to stress that only in the intervals I and III of
the variable � the topological squared mass is negative. In
the interval II of � the topological squared mass is positive
and the effective potential has a trivial minimum. Figure 5
shows the minimum of the effective potential, �, as a
function of �, for the values v1 ¼ 100, v2 ¼ 100, and

jgj ¼ 0:13. Also presented is the form of the effective
potential in each of the three ranges of values of �. From
Fig. 5 we see that the minimum of the effective potential is
at the origin when we are considering very high tempera-
tures, � ! 0, or when we are considering very low tem-
perature, � ! 1. From this last result we have that the
function c ð�Þ goes to zero when the temperature tends to
zero.
We have found the entropy formulas in each interval of

values of � up to certain constants

SIð�Þ ¼ �Pð�Þ þ Rð�Þ þ c ð�Þ þ cteI;

SIIð�Þ ¼ �Pð�Þ þ Rð�Þ þ cteII;

SIIIð�Þ ¼ �Pð�Þ þ Rð�Þ þ c ð�Þ þ cteIII:

(60)

Using the third law of thermodynamics, lim�!1SIII ¼ 0,
assuming the continuity of the entropy with the parameter
�: SIð�1Þ ¼ SIIð�1Þ and SIIð�2Þ ¼ SIIIð�2Þ, and using the
fact that the functions Pð�Þ, Rð�Þ, and c ð�Þ go to zero
when � ! 1, we can fix the constants that appear in the
formulas of the entropies

ct eI ¼ c ð�2Þ � c ð�1Þ; cteII ¼ c ð�2Þ;
cteIII ¼ 0:

(61)

For generic values of the parameters ðv1; v2; gÞ, the func-
tion c ð�Þ is not positive defined and the entropy can be
negative for some values of �. For large values of v1 and v2

and small g this situation is excluded.
With the thermodynamics quantities, the validity of the

Bekenstein bound can be verified for the system. The
Bekenstein bound states that S=E � 2�R, where R is the
smallest ratio of the sphere that circumscribes our finite
spatial domain. Because we are considering that all our

compactified lengths are equal to L, we have that R ¼ffiffiffi
3

p
L=2. Defining the function T ¼ S=2�RE on each of the

intervals I, II, and III and using Eqs. (33), (58), (60), and
(61), we have that

FIG. 5 (color online). The minimum of the effective potential �ð�Þ and the form of the effective potential for different values of �.
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TIð�Þ ¼ 1ffiffiffi
3

p
�

�Pð�Þ þ Rð�Þ þ c ð�Þ þ c ð�2Þ � c ð�1Þ
"ðrÞ þ Pð�Þ þ 
ð�Þ ;

(62)

TIIð�Þ ¼ 1ffiffiffi
3

p
�

�Pð�Þ þ Rð�Þ þ c ð�2Þ
"ðrÞ þ Pð�Þ ; (63)

TIIIð�Þ ¼ 1ffiffiffi
3

p
�

�Pð�Þ þ Rð�Þ þ c ð�Þ
"ðrÞ þ Pð�Þ þ 
ð�Þ : (64)

Each of these functions are valid only when � is defined in
the domains I, II, and III, respectively. In Fig. 6 we have the
function TIð�Þ for � 2 I ¼ ð0; �1Þ; there we have used the
values v1 ¼ 100, v2 ¼ 100, and jgj ¼ 0:13. In this situ-
ation we have that the field exhibits a condensate. In this
regime of high temperatures, we expected that the negative
Casimir energy of the system would be irrelevant to the
Bekenstein bound, since as we can see in Fig. 6, the
thermal fluctuations dominate over any quantum contribu-
tions and the Bekenstein bound is satisfied in this situation.
In Fig. 7 we have the function TIIð�Þ in the region � 2

II ¼ ð�1; �2Þ. In this regime the renormalized effective
potential has a trivial minimum and the system behaves
as a free bosonic gas. Since we are considering a compact
domain with periodic boundary conditions on the spatial
coordinates, we have that the renormalized Cassimir en-

ergy is negative, "ðrÞ ¼ �0:81. From Fig. 7 we see that

from some value �0, defined by the equation "ðrÞ þ Pð�0Þ ¼
1, the function TIIð�Þ begins to take values greater than one
and the Bekenstein bound is violated. It was found that
�0 ¼ 0:6720. In Fig. 7 one can also see a divergent point �d

given by "ðrÞ þ Pð�dÞ ¼ 0. Because the sign of the Casimir
energy is negative, the Bekenstein bound is violated.
In the domain III our theory also exhibits a condensate.

Since in this regime we are considering low temperatures,
the quantum fluctuations dominate over the thermal one.
Figure 8 shows that TIIIð�Þ is negative; this is because the
negative Casimir prevails over the condensate contribution
making the total mean energy of the system negative. Since
the entropy is always positive, the Bekenstein bound is also
violated in this situation.
Then we shown that there is an intrinsically information

storage capacity limit for the ð�’4Þd field theory with the

0.05 0.10 0.15 0.20 0.25

0.01

0.02

0.03

0.04

0.05

0.06

TI

FIG. 6 (color online). The function TIð�Þ in its domain � 2
I ¼ ð0; �1Þ.

1.0 1.5 2.0 2.5

0.10

0.05

0.05

0.10

0.15

TII

FIG. 7 (color online). The function TIIð�Þ in its domain � 2
II ¼ ð�1; �2Þ.

3.0 3.2 3.4

0.00001
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4. 10 6
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TIII

4.1 4.2 4.3 4.4 4.5

1.2 10 7

1. 10 7

8. 10 8

TIII

FIG. 8 (color online). The function TIIIð�Þ in its domain � 2 III ¼ ð�2;1Þ.

BEKENSTEIN BOUND IN ASYMPTOTICALLY FREE FIELD . . . PHYSICAL REVIEW D 82, 045001 (2010)

045001-9



negative sign of the coupling constant, for values of the
temperature greater that certain critical temperatures given
by Tcr ¼ 1=L�0. For temperatures lower than Tcr the
Bekenstein bound in invalidated mainly due to the negative
Casimir energy. The asymptotically freedom of the model
and the presence of the condensate do not change the
discussion about the quantum bound. In conclusion, the
main feature in the discussion of the validity of the
Bekenstein bound is related to the sign of the zero-point
energy of the system.
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