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In this paper we propose a new lifetime model for multivariate survival data with a surviving fraction.
We develop this model assuming that there are m types of unobservable competing risks, where each risk
is related to a time of the occurrence of an event of interest. We explore the use of Markov chain Monte
Carlo methods to develop a Bayesian analysis for the proposed model. We also perform a simulation study
in order to analyse the frequentist coverage probabilities of credible interval derived from posteriors. Our
modelling is illustrated through a real data set.

Keywords: Bayesian inference; competing risks; MCMC; multivariate survival models; cure rate
models; cured fraction

1. Introduction

Cure rate models play an important role in survival analysis, covering data where a proportion
of subjects may remain susceptible to the event of interest. These models, also referred to as
survival models with a surviving fraction or long-term survival models, have become very popu-
lar due to significant progress and advancements in treatment therapies leading to enhanced cure
rates. The proportion of these ‘cured’ units is termed the cured fraction. The terminology is based
on clinical studies, where the event of interest can be the death of a patient or a tumour recur-
rence (which can be attributed to metastasis-component tumour cells left active after an initial
treatment), which cannot occur due to the event of interest. However, nowadays, it is common to
observe applications of cure rate models studies of many other kinds of events, such as criminal
recidivism, divorce, child-bearing, unemployment and costumer churn, amongst others.

Two formulations of cure rate models stand out in the literature as being the prevailing
approaches. Here, we point out a distinguishing feature between them. Firstly, the standard mix-
ture cure model,[1,2] where the number of competing causes of the event of interest is a binary
random variable on {0, 1}, and recently, the promotion time cure model,[3] where the number of
competing causes follows a Poisson distribution. However, these assumptions may not be veri-
fied once the number of competing causes is an unobserved random variable (latent variable). In
order to overcome this restriction, several proposals appeared in the literature considering general
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distributions, such as the geometric, negative binomial, power series, Conway–Maxwell–Poisson
distributions, amongst other. The literature on cure rate models is by now vast and expanding
rapidly. The books by Maller and Zhou [4] and Ibrahim et al.,[5] as well as the articles by
Chen et al.,[6] Tsodikov et al.,[7] Tournoud and Ecochard,[8] Cancho et al.,[9] Perdona and
Louzada-Neto,[10] Kim et al. [11] and Cobre et al. [12] to name a few.

Although extensions of cure rate models were developed, limited attention has been paid to
the research on multivariate cure rate models. In the frequentist framework, Chatterjee and Shih
[13] proposed a marginal approach using bivariate copula models. Price and Manatunga [14]
imposed frailty to account for correlation and conducted the maximum likelihood estimation
under a parametric model assumption. Both methods were based on the mixture cure model.
In the Bayesian paradigm, Chen et al. [15] generalized the work of Yakovlev and Tsodikov
[3] to multivariate failure time data by introducing a positive stable frailty and Louzada et al.
[16] proposed bivariate long-term distribution based on the Farlie–Gumbel–Morgenstern copula
model.

In this paper, a new multivariate cure rate survival model is developed under a scenario of
latent competing causes. In the formulation, we consider that there are m types of latent causes of
failures, which can produce the correspondent event of interest, where these latent variables are
modelled by a multivariate Poisson distribution.[17] In Section 2, we formulate the multivariate
cure rate model. We explore the use of Markov chain Monte Carlo (MCMC) methods to develop
a Bayesian analysis in Section 3. Simulation study is presented in Section 4. An application to a
real data set is given in Section 5. Finally, Section 6 concludes with some general remarks.

2. The model

For an individual in the population, let Nk (k = 1, . . . , m) be the random variable that denotes
the unobservable number of causes of type k of the event of interest for this individual. We
assume that N = (N1, N2, . . . , Nm) follows a multivariate Poisson distribution with probability
mass function

P[N1 = n1, . . . , Nm = nm] = e−{∑m
i=1 θi}

m∏
i=1

θ
ni
i

ni!

s∑
i=0

m∏
j=1

(
nj

i

)
i!

(
θ0∏m
i=1 θi

)i

, (1)

where nj = 0, 1, . . . , θj > 0, j = 0, 1, . . . , m and s = min{n1, . . . , nm}. The above multivariate
distribution allows for positive dependence between the two random variables. Marginally each
random variable follows a Poisson distribution with E(Nj) = θj + θ0 and, Cov(Ni, Nj) = θ0,
i �= j = 1, . . . , m and hence θ0 is a measure of dependence between the two random variables. If
θ0 = 0, then the variables are independent and the multivariate Poisson distribution reduces to
the product of m independent Poisson distributions. For a comprehensive treatment of the multi-
variate Poisson distribution, the reader can refer to Karlis.[17] It is to be noted that the N-vector
also indicates a multivariate frailty which was also considered by Caroni et al.[18] Furthermore,
this model arrives as boundary case for the compound Poisson model. Several models of these
types were studied in [14].

The time for the jth competing cause of type k to produce the event of interest is denoted
by Zkj, k = 1, . . . , m, j = 1, 2, . . .. Given Nk = nk , the Zk1 . . . , Zknk are independent and iden-
tically distributed random variables with cumulative distribution function Fk(·) = 1 − Sk(·).
We also assumed that the latent variables Z1j, . . . , Zkj are independent. The observed times to
event are defined by the random variables Yk = min{Zk0, Zk1, . . . ZkNk } with P(Zk0 = ∞) = 1,
k = 1, 2, . . . , m. Under this set-up we can demonstrate, that the population survival function for



Journal of Statistical Computation and Simulation 281

Y = (Y1, . . . , Ym) is given by

Spop(y) = exp

{
−

m∑
i=1

θi(1 − Si(yi)) − θ0

(
1 −

m∏
i=1

Si(yi)

)}
. (2)

The survival function Spop(y) in Equation (2) is not a proper survival, that is,
limy1,...,ym→∞ Spop(y) = exp{−∑m

i=0 θi} > 0 (the joint cure fraction). Note that when θ0 = 0 in
Equation (2), the joint survival function reduces to the product of m independent survival
functions. From Equation (2), the marginal survival functions are

Spop(yk) = exp{−(θk + θ0)Fk(yk)}, k = 1, . . . , m. (3)

Equation (3) indicates that the marginal survival function has a cure rate structure with proba-
bility of cure p0k = e−θk−θ0 for Yk , k = 1, . . . , m. It is important to note in Equation (3) that each
marginal survival function has the structure of the promotion time cure model.[3,6] In Equation
(3) that each marginal distribution has a proportional hazards structure as long as the covariates,
only enter through θk and θ0. The marginal hazard function is given by, (θk + θ0)fk(yk) which
satisfies the conditions for the proportional hazards model.[19] This is a desirable feature of the
proposed model that leads to attractive theoretical properties.

Without loss of generality, considering the bivariate distribution of (Y1, Y2), then joint survival
function is given by

Spop(y1, y2) = exp{−θ1(1 − S1(y1)) − θ2(1 − S2(y2)) − θ0(1 − S1(y1)S2(y2))}. (4)

This distribution will be called as a bivariate cure rate (BCR) model. The parameter θ0 is a mea-
sure of association between (Y1, Y2). As θ0 → 0, this implies less association between (Y1, Y2)

which can be seen from Equation (4). Following Clayton [20] and Oakes,[21] we can com-
pute a local measure of association, denoted by ϑ∗(Y1, Y2), as a function of θ0. This measure of
association is defined as

ϑ∗(Y1, Y2) = Spop(y1, y2)(∂
2/∂y1∂y2)Spop(y1, y2)

(∂Spop(y1, y2)/∂y1)(∂Spop(y1, y2)/∂y2)
. (5)

The measure in Equation (5), has the interpretation as the ratio of the hazard rate of the condi-
tional distribution of Y1 (Y2), given Y2 = y2 (Y1 = y1), to that of Y1 (Y2) given Y2 > y2 (Y1 > y1).
For more discussion of Equation (5), see Clayton [20] and Oakes.[21] For the BCR model in
Equation (4), ϑ∗(y1, y2) is well defined and is given by

ϑ∗(y1, y2) = 1 + θ0{[θ1 + θ0S2(y2)][θ2 + θ0S1(y1))]}−1. (6)

We see that ϑ∗(y1, y2) in Equation (6) increases in (y1, y2). That is, the association between
(y1, y2) is less when (y1, y2) are small and the association increases over time.

The following theorem is a generalization of the proposed model in Equation (2) and provides
a natural extension of the univariate survival cure rate models.

Theorem 2.1 Let N = (N1, N2, . . . , Nm) be a random vector with probability-generating
function, ϕN(w1, . . . , wm) and random vector Y = (Y1, . . . , Ym) defined in Equation (2). Then,
the joint survival function of Y is given by

Spop(y) = ϕN(S1(y1), . . . , Sm(ym)). (7)
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Proof Under the conditions of theorem, we can write the joint survival function of Y as

Spop(y) = P[N = 0] +
∞∑

n1,...,nm=1

P[Z11 > y1, . . . , Z1n1 > y1, . . . , Zm1 > ym, . . . , Zmnm > ym]

× P[N1 = n1, . . . , Nm = nm]

= P[N1 = 0, . . . , Nm = 0] +
∞∑

n1,...,nm=1

P[N1 = n1, . . . , Nm = nm]Sn1
1 (y1) · · · Snm

m (ym)

=
∞∑

n1,...,nm=1

P[N1 = n1, . . . , Nm = nm]Sn1
1 (y1) · · · Snm

m (ym)

= ϕN(S1(y1), . . . , Sm(ym)).
�

The last step comes from the definition of the probability-generating function.
Again the survival function Spop(y) in Equation (7) is not a proper survival, that

is, limy1,...,ym→∞ Spop(y) = ϕN(0, . . . 0) = P[N1 = 0, . . . , Nm = 0] > 0 (joint cure rate). From
Equation (7), the marginal survival function is obtained as

Spop(yk) = ϕNk (Sk(yk)), k = 1, . . . , m. (8)

The marginal survival function (8) is the same as the one proposed by Tsodikov et al. [7] and
Rodrigues et al.[22] The marginal cure rate proportion is Sk(∞) = ϕNk (0) = P[Nk = 0] > 0.
In the case that random variables N1, . . . , Nm are independent, the survival function Spop(y) in
Equation (7) is given by

Spop(y) =
m∏

k=1

ϕNk (Sk(yk)).

The proposed model in Equation (2) can be obtained from Theorem 2.1. To be more specific,
the random vector N = (N1, . . . , Nm) with multivariate Poisson given in Equation (1) is defined
as Nk = Dk + D0, k = 1, . . . , m, where Di, i = 0, 1, . . . , m are independent univariate Poisson
distributed random variables with parameters θi. The probability-generating function, of N is
defined as

ϕN(w1, . . . , wm) = E[wN1
1 wN2

2 · · · wNm
m ] = E[wD1+D0

1 × wD2+D0
2 × · · · × wDm+D0

m ]

= E[wD1
1 × wD2

2 × · · · × wDm
m (w1 × · · · × wm)D0 ]

= ϕD1(w1) × · · · × ϕDm(wm) × ϕD0

(
m∏

i=1

wi

)

= exp

{
−

m∑
i=1

θi(1 − wi) − θ0

(
1 −

m∏
i=1

wi

)}
. (9)

From Theorem 2.1 and Equation (9), we obtain the model given in Equation (2).
We can also obtain an extension of bivariate version of the univariate standard mixture cure

rate model. In what follows, consider a bivariate Bernoulli random vector (N1, N2), which takes
values from (0, 0), (0, 1), (1, 0) and (1, 1) in the cartesian product space {0, 1}2 = {0, 1} × {0, 1}
with probability θij = P[N1 = i, N2 = j], i, j = 0, 1, such that,

∑1
i=0

∑1
j=0 θij = 1. Then, the cor-

responding probability-generating function is given by ϕN(w1, w2) = θ00 + θ10w1 + θ01w2 +
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θ11w1w2. From Theorem 2.1, we obtain the following results related to the standard mixture
cure rate model:

Spop(y1, y2) = θ00 + θ10S1(y1) + θ01S2(y2) + θ11S1(y1)S2(y2).

Thus, the joint cure fraction is Spop(∞, ∞) = θ00. The marginal survival functions are given by
Spop(y1) = θ00 + θ01 + (θ10 + θ11)S1(y1) and Spop(y2) = θ00 + θ10 + (θ01 + θ11)S2(y2).

Now, if we consider a random vector (N1, N2) which follows a bivariate geometric distribution
with probability mass function

P[N1 = n1, N2 = n2] =
(

n1 + n2

n1

)
(1 − θ1 − θ2)θ

n1
1 θ

n2
2 ,

where nj = 0, 1, . . . , 0 < θj < 1, j = 1, 2 and 0 < 1 − θ1 − θ2 < 1. From Theorem 2.1, we
obtain a new BCR model as

Spop(y1, y2) = 1 − θ1 − θ2

1 − θ1S1(y1) − θ2S2(y2)
,

with the joint cure fraction Spop(∞, ∞) = 1 − θ1 − θ2. The marginal survival functions are
given by Spop(y1) = (1 − θ1 − θ2)/(1 − θ2 − θ1S1(y1)) and Spop(y2) = (1 − θ1 − θ2)/(1 − θ1−
θ2S2(y2)), respectively. This marginal model is similar to the one proposed by Gu et al.[23]

In the next section, we develop a Bayesian procedure for inference on bivariate survival cure
rate model given in Equation (4). Hereafter, we assume a Weibull distribution for the unobserved
time Z with Fk(z|γ k) = 1 − Sk(z|γ k) = 1 − exp(−zγk1 eγk2) and fk(z|γ k) = γk1zγk1−1 exp(γk2 −
zγk1 eγk2), for z > 0, γk1 > 0, γk2 ∈ R and γk = (γk1, γk2)

�, k = 1, 2. However, in principle, other
survival models may be undertaken, taking their specificities into account.

3. Inference

Let us consider the situation when the failure times (Y1, Y2) in Section 2 are not completely
observed and are subject to right censoring. Let Cki denote the censoring time of k component,
k = 1, 2. Suppose that (Y1i; Y2i) and (C1i; C2i) are independent. For each individual i, observed
quantities are represented by the random variables tki = min{Yki, Cki} and δki = I(tki = Yki),
which denotes a censorship indicator, k = 1, 2, i = 1, . . . , n.

Let xki denote the vectors of covariates for the ith individual. Extending our model, we propose
to relate the parameters θ1i and θ2i of the bivariate Poisson distribution to the covariates by the
logarithmic link

θ1i = exp(x�
1iβ1) and θ2i = exp(x�

2iβ2), k = 1, 2, (10)

where βk = (βk1, . . . , βkpk )
� is the vector of regression coefficients associated with the covariates

xki. Now with the expression (10) we can express the likelihood of ϑ = (β1, β2, γ 1, γ 2, θ0) under
non-informative censoring as,

L(ϑ |D) =
n∏

i=1

Spop(t1i, t2i) ×
2∏

k=1

[fk(tki|γ k)]
δki [θ0 + (θ2i + θ0S1(t1i|γ 1))(θ1i + θ0S2(t2i|γ 2))]

δ1iδ2i

× (θ1i + θ0S2(t2i|γ 2))
δ1i(1−δ2i)(θ2i + θ0S1(t1i|γ 1))

δ2i(1−δ1i), (11)

where D = (t, δ, x), t = (t1, t2), tk = (tk1, . . . , tkn)
�, x = (x1, x2), xk = (xk1, . . . , xkn)

�, δ =
(δ1, δ2) and δk = (δk1, . . . , δkn)

�, k = 1, 2, whereas Spop(t1, t2) is survival function given in
Equation (4) and fk(tki|γ k) and Sk(tki|γ k), k = 1, 2 are density and survival functions of the
Weibull distribution.
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3.1. Prior and posterior

Now, some inferential tools are investigated under a Bayesian viewpoint. The normal distribution
and gamma distribution with a as shape and b as scale (and mean a/b) are denoted by N(μ, σ 2)

and G(a, b). In this context, we assume that βk , k = 1, 2, γ k1, γk2 and θ0 are a priori independent,
that is,

π(ϑ) =
2∏

k=1

π(βk)π(γk1)π(γk2)π(θ0), (12)

where βk ∼ Npk (0, �k0), γk1 ∼ G(ak0, bk0), γk2 ∼ N1(0, σ 2
γk2

) k = 1, 2 and θ0 ∼ G(a0, b0). Here,
all the hyper-parameters are specified in order to express non-informative priors.

Combining the likelihood function (11) and the prior distribution in Equation (12), the joint
posterior distribution for ϑ is obtained as π(ϑ |D) ∝ L(ϑ |D)

∏2
k=1 π(βk)π(γk1)π(γk2)φ(θ0).

This joint posterior density is analytically intractable. Thus, the computational problem can be
easily handled by using MCMC methods for sampling from the posterior distribution. From
Equations (10)–(12), we write the full conditional distributions of βk , γ k = (γ1k , γ2k) and θ0 as

π(βk | ·) ∝ exp

[
−

n∑
i=1

θkiFk(tki|γ k)

]
n∏

i=1


i�kiπ(βk), k = 1, 2, (13)

π(γ 1 | ·) ∝ exp

[
−

n∑
i=1

(θ1iF1(t1i|γ 1) − θ0S1(t1i|γ 1)S2(t2i|γ 2))

]
n∏

i=1

f1(t1i|γ 1)
i�2iπ(γ 1),

(14)

π(γ 2 | ·) ∝ exp

[
−

n∑
i=1

(θ2iF2(t2i|γ 2) − θ0S1(t1i|γ 1)S2(t2i|γ 2))

]
n∏

i=1

f2(t2i|γ 2)
i�1iπ(γ 2),

(15)

and

π(θ0 | ·) ∝ exp[−θ0S1(t1i|γ 1)S2(t2i|γ 2))]
n∏

i=1

�1i
i�2iπ(θ0), (16)

where 
i = [θ0 + (θ2i + θ0S1(t1i|γ 1))(θ1i + θ0S2(t2i|γ 2))]
δ1iδ2i , �1i = (θ1i + θ0S2(t2i|γ 2))

δ1i(1−δ2i)

and �2i = (θ2i + θ0S1(t1i|γ 1))
δ2i(1−δ1i).

Clearly the conditional density functions in Equations (13)–(16) do not belong to any known
parametric density family. In order to generate our samples, we then implement a Metropolis–
Hastings algorithm within Gibbs iterations.[24] For example, to implement the Metropolis–
Hastings algorithm for the parameter θ0, we consider a target distribution gθ0(θ0) = π(θ0|·), and
under given model, θ0 > 0 we consider the transformation θ0 = exp(η), where, −∞ < η < ∞.
Then, gη(η) = gθ0(η) eη.

Instead of directly sampling θ0, we generate η by choosing a normal proposal N(η̂, σ 2
η̂
) where

θ̂ is the maximizer of the logarithm of gη(η) and σ 2
η̂

is the minus of the inverse of the second
derivative of logarithm of gη(η) evaluated in η = η̂. The algorithm to generate η operates accord-
ing to (1) let η be the current value; (2) generate a point η∗ from N(η̂, σ 2

η̂
) and (3) a move from

η to η∗ is made with probability min{1, [gη(η
∗)φ((η − η̂)/ση̂)]/[gη(η)φ((η∗ − η̂)/ση̂)]}, where

φ(·) is the standard normal probability density function.
After we sample η, we obtain θ0 = eη. To implement the Metropolis–Hastings algorithm for

the parameter βk and γ k , k = 1, 2, we proceed in the same way as for the parameter θ0, but con-
sidering as target distribution the respective conditional density functions are given in Equations
(13)–(15).
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3.2. Model comparison criteria

There exist a variety of methodologies to compare several competing models for a given data set
and to select the one that best fits the data. One of the most used in applied Bayesian research
is the deviance information criterion (DIC) proposed by Spiegelhalter et al.,[25] the expected
Akaike information criterion (EAIC) – [26], and the expected Bayesian (or Schwarz) informa-
tion criterion (EBIC) – [27] can be used. These criteria are based on the posterior mean of the
deviance, d(ϑ) which can be approximated from the MCMC output by

d̄ =
Q∑

q=1

d(ϑq)

Q
,

where the index q indicates the qth realization of a total of Q realization and d(ϑ) = −2
∑n

i=1 log
[g(t1i, t2i|ϑ)], where g(·) is the pdf corresponding to our model. For observed data, we have that
g(t1i, t2i|ϑ) is the ith component of likelihood function.

The DIC criterion can be estimated using the MCMC output by D̂IC = d̄ + ρ̂d = 2d̄ − d̂ ,
with ρD is the effective number of parameters, which is defined as E{d(ϑ)} − d{E(ϑ)}, where
d{E(ϑ)} is the deviance evaluated at the posterior mean and estimated as

D̂ = d

⎛⎝ 1

Q

Q∑
q=1

β
(q)

1 ,
1

Q

Q∑
q=1

β
(q)

2 ,
1

Q

Q∑
q=1

γ
(q)

1 ,
1

Q

Q∑
q=1

γ
(q)

2 ,
1

Q

Q∑
q=1

θ
(q)

0

⎞⎠ .

Similarly, the EAIC and EBIC criteria can be estimated by means of ÊAIC = d̄ + 2#(ϑ) and
ÊBIC = d̄ + #(ϑ) log(n), where #(ϑ) is the number of model parameters. The EBIC criterion
used in this work is the same as that in [28]. Comparing alternative models, the preferred model
is the one with the smallest criterion values.

Another criterion which is one of the most used in applied works is derived from the condi-
tional predictive ordinate (CPO) statistic. For a detailed discussion on the CPO statistic and its
applications to model selection, see Gelfand et al. [29] and Geisser and Eddy.[30] Let D denote
the full data and D(−i) denote the data with the ith observation deleted. We denote the poste-
rior density of ϑ given D(−i) by π(ϑ |D(−i)), i = 1, . . . , n. For the ith observation, CPOi can be
written as

CPOi =
∫

ϑ∈�

g(t1i, t2i|ϑ)π(ϑ |D(−i))dϑ =
{∫

ϑ

π(ϑ |D)

g(t1i, t2i|ϑ)
dϑ

}−1

. (17)

For the proposed model a closed form of the CPOi is not available. However, a Monte Carlo
estimate of CPOi can be obtained by using a single MCMC sample from the posterior distribution
π(ϑ |D). Let ϑ (1), . . . , ϑ (Q) be a sample of size Q of π(ϑ |D) after the burn-in. A Monte Carlo
approximation of CPOi [5] is given by

ĈPOi =
⎧⎨⎩ 1

Q

Q∑
q=1

1

g(t1i, t2i|ϑ (q))

⎫⎬⎭
−1

.

For model comparison, we use the log pseudo-marginal likelihood (LPML) defined by LPML =∑n
i=1 log(ĈPOi). The larger is the value of LPML, the better is the fit of the model.
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4. Simulation study

To evaluate the performance of the Bayesian estimation approach for the bivariate survival cure
rate model, we carry on a simulation study. In this study, we consider the BCR model with the
Weibull distribution for the event time (Zkj, k = 1, 2, j = 1, 2, . . .), with parameter, γk1 = 1.4
and γk2 = 2.0. For each individual i, i = 1, . . . , n, the number of competing risks of the event
of interest for this individual (N1, N2) is generated from the bivariate distribution with param-
eter θ0 = 0.5, θ1i = exp(β10 + β11xi) and θ2i = exp(β20 + β21xi), where β10 = −1.6, β11 = 1.3,
β20 = −1.5, β21 = 1.1 and the covariates xi are generated from a Bernoulli distribution with
parameter 0.5. The censoring times Cki are sampled from the uniform distribution on the interval
(0, τk), where τk is set in order to control the proportion of censored observations. In this study,
the proportion of censored observations was on an average approximately equal to 50%.

We consider a great proportion of censored observations since it is common we find such
amount of censoring in practice. For instance, a great censoring proportion is observed in the
data set obtained from the diabetic retinopathy study [31] of time of blindness in each eye of
diabetic patients with diabetic retinopathy, which will be considered further in Section 5.

The sample sizes are taken as n = 200 and 400. For each simulated data set, the posterior
summaries and 95% highest posterior density (HPD) intervals of the model parameters were
obtained. A amount of 80,000 MCMC posterior samples are generated for each parameter, from
which 20,000 iterations, regarded as the burn-in time, are eliminated for obtaining a sample of
size 60,000. The autocorrelation of these sampled values are reduced by taking a spacing of size
10, thus resulting in 6000 samples. For each sample, we calculate the estimates of each parameter
and then by using these estimates we obtain the average (AE), standard deviation (SD), the root-
mean-square error (RMSE) and the coverage probability (PC). The results are all presented in
Table 1, in mean values over 5000 Monte Carlo repetitions. We observe that the RMSE decreases
as sample size increases. Also, we observe that the difference between the AE’s and the parameter
values are quite small which suggests that the estimates possess very little bias. Finally, we note
that the simulated coverage probabilities are quite close to the nominal level.

5. Application

In this section, we fit the proposed model on a data set obtained from the diabetic retinopathy
study [31] of time of blindness in each eye of the 197 diabetic patients with diabetic Retinopathy.
One eye of each patient was randomly selected for treatment (the effectiveness of laser photo
coagulation in delaying the onsets of blindness) and other eye was observed without treatment.

Table 1. Simulation results of the posterior summaries over 5000 replications.

Parameter

n β10 β11 γ11 γ12 β20 β21 γ21 γ12 θ0

200 AE −1.489 1.201 2.018 1.409 −1.482 1.060 2.030 1.410 0.489
SD 0.348 0.381 0.155 0.161 0.368 0.345 0.154 0.153 0.068

RMSE 0.368 0.401 0.156 0.163 0.373 0.361 0.157 0.1549 0.072
PC 0.942 0.943 0.949 0.942 0.953 0.950 0.948 0.949 0.945

400 AE −1.592 1.283 2.008 1.391 −1.501 1.010 2.021 1.403 0.502
SD 0.268 0.252 0.133 0.130 0.368 0.256 0.143 0.139 0.034

RMSE 0.269 0.254 0.137 0.131 0.373 0.258 0.145 0.141 0.034
PC 0.951 0.948 0.952 0.948 0.948 0.951 0.949 0.951 0.952
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A binary age covariate (0 for juvenile and 1 for adult) is available. The first component of the
bivariate survival time is the time of the blindness on the treated eye (Y1) and the second com-
ponent is the similar time for the untreated eye (Y2). One notable feature of the data set is that
159 patients experienced some form of censoring. For all these patients, censoring time is the
same. For 80 patients, the censoring times were greater than or equal to the failure times of the
untreated eyes. The reverse happened for only 16 patients. The remaining 38 patients experienced
failure before the censoring time in both eyes of which simultaneous failures were observed for
6 patients.

Huster et al. [31] analysed the data using a frequentist approach with the Clayton-Oakes model
and Weibull marginal distributions. Manatunga and Oakes [32] considered random effect mod-
els and Sahu and Dey [28] considered exponential and Weibull bivariate distributions with a
Bayesian approach. and Romeo et al. [33] presented the Bayesian counterpart to the frequen-
tist work of Shih and Louis,[34] based on Archimedean copulas with parametric estimation for
the marginals. All proposals do not consider the possibility that patients who may not remain
susceptible to the event of interest. Recently, Louzada et al. [16] analysed the data considering
bivariate long-term distribution based on the Farlie–Gumbel–Morgenstern copula model. The
objective here is to see the effect of age in the surviving of patients, and to see whether there is
any association between treated and untreated time to event and to investigate whether there is
any difference in the proportion of patients of non-blindness (cure fraction) between eyes treated
and untreated.

Then, the BCR model proposed in Equation (4) is fitted to the data. For model fitting, the
following independent priors are adopted in the Bayesian computations βkj ∼ N(0, 104), k = 1, 2
and j = 0, 1, γk1 ∼ G(1, 0.01) and γk2 ∼ N(0, 104). Thus, our choice is to assume weakly but
informative prior. Since our prior is still informative, the posterior is always proper. A total
of 80,000 MCMC posterior samples are generated for each parameter, from which the 20,000
iterations are eliminated for obtaining 60,000 samples. The autocorrelation of these sampled
values are reduced by taking a spacing of size 10 thus resulting in 6000 samples. Figure 1 shows
the behaviour of the chains of the estimated parameters.

Table 2 gives posterior estimates of β = (β1, β2), (γ 1, γ 2), and θ0, where βk = (βk0, βk1), and
γ k = (γ1k , γ2k), k = 1, 2. We see from Table 2 that all of the HPD intervals for the regression
coefficients of the covariates contain 0, this implies that the age do not have a significant effect
on the surviving of patients. Also, from Table 2, we see that the posterior mean of θ0 is 0.247,
with a 95% HPD interval of (0.145, 0.393) which indicates significant association between Y1

and Y2. A plot of the marginal posterior distribution of θ0 is shown in Figure 1. We see in this
figure that the posterior distribution of θ0 appears to be slightly skewed.

To evaluate the robustness of the model with regard to the choice of the hyper-parameters
of the prior distributions, a small sensitivity study is carried out with larger SDs for the prior
distributions. The posterior summaries of the parameters do not display much difference and do
not alter the results presented in Table 2.

We compare the fitting of the BCR model with bivariate long-term distribution based on the
Farlie–Gumbel–Morgenstern (FGM) copula model [16] with Weibull mixture marginal distribu-
tions by considering DIC, EAIC, EBIC and LPLM criteria. These information criteria furnish the
values given in Table 3. According to all the criteria, we have indication in favour of the BCR
model.

Romeo et al. [33] modelled this data set using Archimedean copulas with Weibull marginal
distribution. The estimated LPLM and BIC measures for Clayton copula were, respectively,
−643.402 and 1308.02. Also, Sahu and Dey [28] considered a bivariate Weibull model, the
estimated BIC measure was 1703.03. Based on Bayesian criteria, there is a clear positive evi-
dence in favour of the BCR model, indicating that the model can be seen as a competitor to the
bivariate survival with cure fraction models.
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Figure 1. Sequence plots of the chains.

Table 2. Posterior summaries of the parameters for the BCR model for
the diabetic retinopathy data set.

95%HPD

Time to blindness Parameter Mean SD Lower Upper

Treated eye γ11 1.869 0.2217 1.473 2.335
γ12 −1.934 0.2633 −2.440 −1.420
β10 −1.449 0.347 −2.129 −0.776
β11 −1.216 0.8207 −2.854 0.380

Untreated eye γ21 1.746 0.165 1.443 2.101
γ22 −2.112 0.2113 −2.529 −1.699
β20 −0.563 0.221 −0.997 −0.129
β21 0.488 0.251 −0.012 0.976

θ0 0.247 0.064 0.145 0.393

Table 3. Bayesian criteria for the fitted models.

Criterion

Model LPLM DIC EAIC EBIC

FGM −689.32 1589.67 1597.40 1626.95
BCR −469.12 932.87 940.92 970.47
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Table 4. Posterior summaries of the cured fraction strati-
fied by juvenile and adult patients.

95%HPD

Eye Patient Mean SD Lower Upper

Treated Juvenile 0.611 0.053 0.498 0.704
Adult 0.710 0.063 0.565 0.805

Untreated Juvenile 0.430 0.059 0.320 0.551
Adult 0.309 0.060 0.195 0.428

We turn our attention to the role of the covariates on the cured fraction p0. Table 4 shows the
posterior summaries of the cured fraction stratified by group (juvenile and adult). A plot of the
marginal posterior distribution of θ0 is shown in Figure 2. The plot and the table both reveals that
the mean cure fraction for old patients with treated eye is higher than that of juvenile patients. In
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Figure 2. The marginal posterior density of θ0.
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Figure 3. Posterior density estimates for the cure rates corresponding to treated eye (left panel) and untreated eye (right
panel) patients.
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Figure 4. Kaplan–Meier curve together with Bayesian estimates of the survival for patients with treated eye (left panel)
and untreated eye (right panel).
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Figure 5. The bivariate posterior survival surface.

the case of juvenile patients with untreated eye the mean cure fraction is higher than that of the
old patients. For both age groups, in the case of patients with treated eye the mean cure fraction
is greater than that of the patients with untreated eye (Figure 3).

Figure 4 exhibits the Kaplan–Meier estimates of the survival function together with the
Bayesian estimates of the marginal survival function based on the multivariate cure rate model.
The covariates are not used in constructing plots. We see that the two curves in both plots on
the left and right panel are nearly similar and appear to plateau after approximately 6 years of
follow-up. Figure 5 shows a three-dimensional plot of the posterior mean survival surface. We
observe in this plot how the survival curve plateaus for each failure time variable.

6. Conclusions

In this paper, we proposed a new multivariate survival model with cure rate and have examined
some of its properties. This model is useful for jointly modelling any type of time to event data
with a surviving fraction. We also develop a multivariate extension of the univariate survival
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cure rate model proposed by Tsodikov et al. [7] and Rodrigues et al.[22] In the application to the
diabetic retinopathy data set, we discovered that the BCR model provides the best fit.

The model considered in this article can be fitted using standard available software,[35] which
makes the approach quite powerful and accessible to practitioners in the field.

Future developments of our work may involve other parametric or semi-parametric extensions
of the multivariate lifetime distribution under the proposed set-up, as well as, the relaxation
of assumption that Yk = min{Zk0, Zk1, . . . ZkNk }. Indeed, we may consider the modelling of its
counterpart, Yk = max{Zk0, Zk1, . . . ZkNk }, corresponding to a complementary risk scenarios as
discussed by Louzada-Neto.[36] Moreover, following Cooner et al.,[37] we envisage a general-
ization of our framework by assuming Yk as random, such as we may scan all possible Yk values
from the first to last order statistics.
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