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The Clarke’s matrix is a well-known real and constant transformation matrix used for modal transforma-
tion in three-phase transmission lines modeling. Although modal analysis has been widely discussed in
the technical literature on power system modeling, a new content is approached in this research proving
that the approximation using an exact and constant modal transformation matrix depends on both the
frequency-dependent parameters and transmission line’s length. As an important conclusion, the
approach using the Clarke’s matrix leads to more accurate results considering long transmission lines.
There are two methods for modal decoupling in power systems modeling. The first uses only a single con-
stant and real transformation matrix during the entire modeling/simulation routine. The second uses the
frequency-dependent transformation matrix for parameters decoupling into the propagation modes and
the Clarke’s matrix for mode-to-phase transformation of voltage and current values during simulations.
The accuracy of these two modeling/simulation processes are evaluated, in the time and frequency
domains, based on results obtained from a reference routine that employs the exact frequency-
dependent matrix in modal transformations and numerical transforms for simulation in the time domain.
The proposed analysis proves that the accuracy of both methods varies with the line length during elec-
tromagnetic transient simulations that leads to peak errors up to approximately 10%. The influence of the
line length in modal analysis techniques was not approached in previous references on power system
modeling, which represents the original contribution of this paper.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Modal analysis techniques are widely applied in power systems
modeling [1–4]. In this context, a coupled multiphase system can
be decoupled into propagation modes that can be modeled sepa-
rately as individual single-phase systems. Modal transformations
are successively applied during the modeling and simulation routi-
nes to convert line parameters, voltages and currents from the
phase domain to modal domain and vice versa [5]. These transfor-
mations are carried out by using modal transformation matrices,
which are usually frequency-dependent due to frequency effect
on the line parameters. However, depending on the line geometry
and system characteristics, several approximations can be
achieved in order to produce constant modal transformation
matrices, e.g.: symmetrical components, Karrenbauer, Clarke and
others. The modal decoupling theory represents an essential tool
in power systems modeling for analysis of insulation coordination,
electromagnetic compatibility, protection and general design of
transmission lines.

Transmission line models for simulation of electromagnetic
transients are usually presented in the technical literature into
two categories: distributed- or lumped-parameters models. The
first is developed directly from the frequency-dependent dis-
tributed parameters of the line and using modal decoupling, where
each propagation mode is represented as an independent two-port
circuit and simulation results are obtained in the time domain
from numerical transforms [6]. The second category is also based
on modal decoupling, where each propagation mode is represented
as a single-phase line by electric circuit approach and the fre-
quency effect on the line parameters is included directly in the
time domain by means of fitting techniques [3,4,7].

The two modeling techniques present advantages and restric-
tions that were well established in the literature on transmission
line modeling [1,5]. However, some important issues should be
emphasized for an appropriate understanding of the proposed
analysis. Although the distributed-parameters models show a great
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accuracy for a wide range of frequencies, i.e., for any of electromag-
netic transient in power systems, since a switching up to a very fast
steep-front impulse (atmospheric impulse), these frequency-
domain models have several limitations for inclusion of non-
linear and time-varying events during simulations [8,9]. On the
other hand, lumped-parameters models are versatile in the inclu-
sion of time-varying elements during time-domain simulations
(e.g. corona effect, non-linear loads and fault occurrences) [3,4].
However, the multiconductor line modeling by lumped elements
presents some numerical errors due to the numerical solution of
the differential equations and requires a real and constant modal
transformation matrix for voltage and current transformation from
the modal domain to the phase domain. The use of a real and con-
stant matrix instead the frequency-dependent modal matrix,
which is calculated directly from the admittance and impedance
matrices, represents a valid approximation only for transmission
lines with vertical symmetry plane. Thus, some errors are expected
from such approximation, which were also evaluated in the techni-
cal literature [2]. Alternative techniques were also proposed for
reduction of these errors, based on the alternation in the use of
the exact and Clarke’s matrices during the modeling and simula-
tion process [5].

In this context, an additional and original analysis is proposed
for evaluation of possible errors in the transmission line modeling,
using modal techniques, as a function of the line length. Eventual
errors in the frequency domain are further analyzed in the time
domain by means of electromagnetic transient simulations, i.e., in
terms of wave shape, voltage and current peaks which power sys-
tems are subject during the occurrence of a steep-front impulse.
2. Three-phase line models using modal analysis

The modal decoupling consists into decouple a three-phase
transmission line into three independent propagation modes,
which can be represented as three single-phase lines. In this con-
text, the differential equations of a multiconductor line are intro-
duced as follows [2]:

d½Vph�
dx

¼ �½Z�½Iph� ð1Þ
d½Iph�
dx

¼ �½Y�½Vph� ð2Þ

Terms [Z] and [Y] are the impedance and admittance matrices of
the line, respectively. The phase voltages and currents are in vec-
tors [Vph] and [Iph], respectively. The solution of Eqs. (1) and (2) is
not a trivial procedure because the impedance and admittance
matrices have mutual terms, i.e., phases of the multiconductor line
are coupled by mutual terms.

By differentiating (1) and (2) and substituting the first deriva-
tives back into the second derivatives, the following expressions
are obtained:

d2½Vph�
dx2

¼ ½Z�½Y�½Vph� ¼ ½SV �½Vph� ð3Þ
d2½Iph�
dx2

¼ ½Y�½Z�½Iph� ¼ ½SI�½Iph� ð4Þ

Since [Z] and [Y] are symmetrical, the product [Z][Y] and [Y][Z],
in Eqs. (3) and (4), respectively, are defined as ½SV � and ½SI� that are
also transposed each other:

½SV � ¼ ½Si�0 ð5Þ
However, ½SV � and ½SI� are not symmetrical.
Due to relationship (5), ½SV � and ½SI� share the same polynomial
characteristic and consequently have the same eigenvalues ½k�.
Nonetheless, a matrix and its transpose do not have the same
eigenvectors. Thus, the matrix with eigenvalues ½k� is related to
½SV � and ½SI� through the eigenvectors ½TV � and ½TI�:

½k� ¼ ½TV ��1½SV �½TV � ¼ ½TV ��1½Z�½Y �½TV � ð6Þ

½k� ¼ ½TI��1½SI�½TI� ¼ ½TI��1½Y �½Z�½TI� ð7Þ
Isolating the products ½Z�½Y� and ½Y�½Z� from (6) and (7) and sub-

stituting them in (3) and (4), the following expressions are
obtained:

d2½TV ��1½Vph�
dx2

¼ ½k�½TV ��1½Vph� � d2½Vm�
dx2

¼ ½k�½Vm� ð8Þ

d2½TI��1½Iph�
dx2

¼ ½k�½TI��1½Iph� � d2½Im�
dx2

¼ ½k�½Im� ð9Þ

From Eqs. (8) and (9), the voltages and currents in the modal
domain are identified and can be expressed as:

½Vm� ¼ ½TV ��1½Vph� ð10Þ

½Im� ¼ ½TI��1½Iph� ð11Þ
Defining Eqs. (10) and (11) from (1) and (2):

d½Vm�
dx

¼ �½TV ��1½Z�½TI�½Im� ð12Þ

d½Im�
dx

¼ �½TI��1½Y�½TV �½Vm� ð13Þ

The modal impedance matrix ½Zm� and modal admittance matrix
½Ym� are defined:

½Zm� ¼ ½TV ��1½Z�½TI� ð14Þ

½Ym� ¼ ½TI��1½Y�½TV � ð15Þ
The transformation matrices ½TI� and ½TV � in Eqs. (10)–(15) vary

with the frequency because ½Y� and ½Z� are also frequency depen-
dent. The relationship of the transformation matrices is expressed
[4]:

½TV ��1 ¼ ½TI�T ð16Þ
The modal matrices ½Zm� and ½Ym� are diagonal and are calcu-

lated as a function of the frequency. Since the modal matrices
are diagonal, each propagation mode is completely decoupled from
each other and can be represented as a single-phase transmission
line. This way, the phase-mode-phase conversion during modeling
and simulation routines can be described in Fig. 1.
3. Single-phase line representation

As described in the previous section, the solution of multicon-
ductor line Eqs. (1) and (2) is possible from the line decoupling into
n independent propagation modes. This way, each mode can be
modeled as a single-phase line using several techniques based on
the representation by distributed parameters in the frequency
domain or by lumped parameters in the time domain. As the goal
of the proposed analysis is to evaluate the accuracy in the use of
modal techniques as a function of the line length, the line repre-
sentation by two-port circuit is the most accurate method for mod-
eling the propagation modes without errors in the electrical
parameters representation [2,5]. The frequency-domain equations
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Fig. 1. Modal and phase representations in transmission line modeling.
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of the two-port circuit for a single-phase line with length l are
expressed in (17).

Vs

Is

� �
¼ coshðClÞ �ZcsenhðClÞ

1
Zc
senhðCLÞ � coshðClÞ

" #
Vr

Ir

� �
ð17Þ

The propagation function C and the impedance characteristic Zc
are functions of Y and Z that are frequency dependent, as expressed
in (18) and (19).

C ¼
ffiffiffiffiffiffi
YZ

p
ð18Þ
Zc ¼
ffiffiffiffi
Z
Y

r
ð19Þ

Voltages and currents are calculated for each propagation mode
in the frequency domain using Eq. (17) and then converted to the
phase domain using Eqs. (10) and (11) [5]. Since voltages and cur-
rents are known in the frequency domain at both terminals of the
line, the time domain results are obtained by means of numerical
Laplace transform [6].

The entire modeling and simulation process is described in the
flowchart in Fig. 2.

The computational routine in Fig. 2 shows the process of line
decoupling using modal transformation to the final results in the
time domain. Initially, the transformation matrix is calculated from
the frequency-dependent values of admittance and impedance.
The line decoupling is carried out using the frequency-dependent
transformation matrices, without any approximation using a con-
stant and real matrix [5]. The following step is to model the prop-
agation modes using the two-port representation. Finally, the
results are converted back to the phase domain using the exact
or an approximated transformation matrix, which depends of the
line model considered, a further the frequency-domain currents
and voltages are converted to the time domain using numerical
Laplace transform.
4. Modal transformation matrices

The exact transformation matrix is obtained from the
frequency-dependent impedance and admittance matrices of the
transmission line. Thus, the exact transformation matrix varies
for each frequency value. There are various methods to calculate
the eigenvalues and eigenvectors for calculation of the modal
transformation matrix, as described in the Section 2, for example:
Newton-Raphson method, Schur and Cholesky decompositions and
others [1,2,10].

Line models that are developed directly in the time domain are
usually based on the modal transformation using real and constant
matrices. Since the line model is implemented directly in the time
domain, numerical transforms are not required and the modal
decoupling is carried out by using a real and constant transforma-
tion matrix. A well-known real and constant matrix is the Clarke’s
matrix.

½TI� ¼ ½TClarke� ¼

2ffiffi
6

p 0 1ffiffi
3

p

� 1ffiffi
6

p 1ffiffi
2

p 1ffiffi
3

p

� 1ffiffi
6

p � 1ffiffi
2

p 1ffiffi
3

p

2
664

3
775 ð20Þ

For an untransposed three-phase line with the ground wires
already reduced, the line impedance and admittance matrices have
the following structures:

½Z� ¼
Z11 Z12 Z13

Z12 Z22 Z23

Z13 Z23 Z33

2
64

3
75 ð21Þ

½Y� ¼
Y11 Y12 Y13

Y12 Y22 Y23

Y13 Y23 Y33

2
64

3
75 ð22Þ

By applying the Clarke’s transformation matrix (20) to decouple
the impedance (21) using the Eq. (14), the modal impedance
matrix ½Zm� is obtained:

½Zm� ¼
Za Zab Za0
Zab Zb Zb0

Za0 Zb0 Z0

2
64

3
75 ð23Þ

If the three-phase line is characterized by a vertical symmetry
plane, the mutual impedance Z12 is equal to Z13 and Z22 is similar
to Z33. Consequently, modal impedances Zab and Zb0 are null:

½Zm� ¼
Za 0 Za0
0 Zb 0
Za0 0 Z0

2
64

3
75 ð24Þ

The b-component is an exact mode because there is no coupling
with a and 0.

The self impedance terms are approximately the same for non-
transposed overhead transmission lines whereas the mutual impe-
dance terms present small variations in the entire frequency range
considered during electromagnetic transient simulations in power
systems. In this context, if Z11 is similar to Z22 and Z12 is similar to
Z23, the modal term Za0 can be neglected and the quasi-modes a
and 0 can be also considered as exact propagation modes [10].

The statements on the similarity of self parameters of non-
transposed transmission lines are demonstrated from a typical
440-kV line (Fig. 3). The self and mutual parameters of the line
are calculated with a constant soil resistivity of 1000 Om. The fre-
quency effect and displacement current are usually neglected in
the electromagnetic transients analysis on power systems that
uses the Carson’s series for calculation of the earth-return impe-
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dance, as well established in the technical literature on transmis-
sion line modeling [4,9–11].

The ground wires are implicitly considered in [Z] and [Y] by
means of a ground wire reduction process [11].

Fig. 4 compares the self resistance as a function of the frequency
obtained from the parameters of the transmission line in Fig. 3.

Some variations are observed in the self resistance profile only
from frequencies above 10 kHz, as described in Fig. 4b.

Fig. 5 shows the self inductance profile of the three phases of
the transmission line illustrated in Fig. 3.

Such as in the self resistance, Fig. 5 shows that the self induc-
tance profile of phases 2 and 3, which have the same distance from
the soil, is similar through the entire frequency range analyzed. On
the other hand, phase 1 shows discrete variations, compared to self
inductances of the phases 2 and 3, at frequencies higher than
10 kHz, as shown in details in Fig. 5b.

Even with some differences at frequencies higher than 10 kHz,
the frequency-dependent self impedances of the three-phases are
almost similar. Ideally, if the line decoupling process was exact,
the coupling impedance Za0 should be null.

The frequency-dependent mutual impedances are described in
terms of resistance and inductance in Figs. 6 and 7. The
frequency-dependent mutual resistance is resulted from the
earth-return current through the soil and depends of the soil con-
ductivity. The mutual resistance profiles of the three phases of the
non-transposed line are described in Fig. 6. The mutual resistance
2-3 presents some differences if compared to 1-3 and 1-2 that can
be neglected for the entire frequency range. Thus, the mutual resis-
tance profiles 2-3, 1-2 and 1-3 are practically the same, as
described in Fig. 6.

Fig. 7 shows that there is a practically constant difference in the
mutual inductance between phases 2-3 and phases 1-2. As a con-
sequence, the impedance coupling Za0 is not null. This difference
in the mutual terms is amplified with the increment of frequency
that leads to more evident errors at high frequencies [2,5,10].

However, the influence of high frequencies in the transfer func-
tion of the line is reduced because the line itself works as a low-
pass filter [12]. In this context, the approach by using the Clarke’s
matrix should have a better performance for long transmission
lines.

5. Modal decoupling routines

The line modeling and transient simulations directly in the time
domain require some attention in order to avoid errors in the
modal decoupling. The technical literature on transmission line
modeling presents a few references that suggest some procedures
to improve the accuracy in line models in the time domain based
on modal techniques. An efficient technique proposes to alternate
the use of the exact frequency-dependent transformation matrix,
obtained from the Newton-Raphson method, and the Clarke’s
matrix, i.e., the frequency-dependent transformationmatrix is used
only during the modal decoupling into the propagation modes
whereas the mode-to-phase transformation of the voltage and cur-
rent values is carried out using the approach by the Clarke’s matrix
[5]. This methodology is illustrated in Fig. 2, where line modeling/



Fig. 3. Three-phase transmission line with vertical symmetry.

Fig. 4. Self resistance of the non-transposed transmission line with vertical symmetry.
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Fig. 5. Self inductance of the non-transposed transmission line with vertical symmetry.

Fig. 6. Mutual resistance of the non-transposed transmission line with vertical symmetry.
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simulation is demonstrated into a flowchart that describes two
threads: line decoupling and (voltages and currents) modal trans-
formation. In this context, different transformation matrices can be
used for each thread, as shown in Table 1.

The exact routine, denominated in Table 1, is usually
approached in the reference literature for line models in the
frequency domain by using numerical transforms [8]. The
conventional routine describes the modeling/simulation procedure
applied in line models using fitting techniques for inclusion of the
frequency effect on the line parameters directly in the time domain
[3,4]. Finally, the denominated mixed routine represents the cor-
rected method applied to mitigate the modal decoupling errors
because of the use of a constant and real transformation matrix
during the entire modeling and simulation process, as previous



Fig. 7. Mutual inductance of the non-transposed transmission line with vertical symmetry.

Table 1
Modal techniques.

Routine Line decoupling Modal transformation

Exact Frequency-dependent matrix Frequency-dependent matrix
Conventional Clarke’s matrix Clarke’s matrix
Mixed Frequency-dependent matrix Clarke’s matrix
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described. These three procedures will be evaluated in this paper
for a variable line length.
6. Performance of line models using modal analysis

The use of the Clarke’s matrix as a modal transformation matrix
is widely approached in the technical literature on three-phase line
modeling directly in the time domain. Several references show that
the accuracy of the line modeling depends on the system charac-
teristics, such as if the line is transposed or not or if there is a ver-
tical symmetry plane [1,2,5,10].

The analysis of the line length in the modeling based on modal
decoupling is carried out by using the three procedures indicated
in Table 1. Each mode is represented as a two-port circuit as a func-
tion of the frequency-dependent modal parameters, as described in
Eq. (17). The time-domain simulations are obtained by using
inverse Laplace transforms. The electromagnetic transients are
simulated in a non-transposed transmission line from a steep-
front impulse with 1.2 ms of wave front and 50 ms of tail (atmo-
spheric impulse) that is applied at the sending end [13,14]. This
input signal is represented by the voltage source U(t) and the
Fig. 8. Open-circuit test.
switch S, as indicated in Fig. 8. The transient voltage peak at the
receiving end of the phase 1 is simulated varying the line length
from 10 up to 1100 km. The line configuration with the phases 2
and 3 grounded at the sending end and the three phases opened
at the receiving end is a well-established standard configuration
for validation of transmission line models in the technical litera-
ture on power systems modeling [3–5].

The 1.2/50 ms voltage impulse represents in the frequency
domain a frequency scan that covers the entire frequency range
in the proposed analysis, from 0.01 Hz to 1 MHz, as analyzed in
Figs. 4–7. Thus, the variations observed in the frequency domain
can be also evaluated in the time domain from electromagnetic
transient simulations using the three modeling/simulation tech-
niques in Table 1. Simulations are carried out with a length step
of 10 km per simulation and a maximum error is calculated from
the voltage peaks obtained using the Conventional and Mixed routi-
nes, where the reference values for the error calculation are
obtained from the exact routine that uses the frequency-
dependent matrix in the line decoupling and calculation of voltage
and current values in the frequency and time domains. The per-
centage error is calculated following the Eq. (25).

%Errormodel ¼ 100j jpeakmodelj � jpeakexact j
jpeakexact j

j ð25Þ

Fig. 9 shows the percentage error of the conventional and mixed
routines as a function of the line length. The routine using the
frequency-dependent matrix in the line parameters decoupling
and the Clarke’s matrix for calculation of the voltages and currents
(mixed routine) points a constant error with variation of the line
length. On the other hand, the conventional routine (using only
the approach by the Clarke’s matrix) presents major errors in the
modeling and simulation of short transmission lines from approx-
imately 150 up to 300 km.

The two routines have a similar performance only for long
transmission lines, with more than 800 km. The voltage transient
at the receiving end at phases 1 and 2 are described in Fig. 10,
for a transmission line with 250 km that represents the length
which major errors are observed in Fig. 9.

The solid curve in Fig. 10 represents the reference result based
on the modeling and simulation processes using the exact
frequency-dependent transformation matrix. In this case, the pro-
cedure that alternates the use of exact and Clarke’s matrices
implies errors of 8% whereas the conventional procedure error is
approximately 9.5%.



Fig. 9. Percentage error as a function of the line length.

Fig. 10. Voltage transient at the receiving end of the line with length of 250 km: phases 1 (a) and 2 (b).
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Fig. 9 shows that the conventional and mixed routines provide
similar results for transmission lines with length of approximately
950 km. The voltage transients at the receiving ends of the phases
1 and 2 are shown in Fig. 11.
Fig. 11 shows that the voltage transients obtained from the con-
ventional and mixed routines are similar, since the two curves are
practically overlapped. Simulations in Figs. 10 and 11 confirm the
percentage error profiles in Fig. 9.



Fig. 11. Voltage transient at the receiving end of the line with length of 950 km: phases 1 (a) and 2 (b).
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7. Conclusions

The use of real and constant modal transformation matrices is
necessary for transmission line modeling in the time domain. The
use of modal analysis in power systems modeling has been widely
approached in the technical literature. However, the impact of the
transmission line length in the modal decoupling was not even
mentioned in previous references. In this context, this research
provides a complementary analysis in power systems modeling
by using modal analysis.

A preliminary analysis was carried out on the electrical param-
eters of a non-transposed line with vertical symmetry plane. Major
variations among the phases are observed at high frequencies in
the self parameters whereas the mutual parameters, more specifi-
cally the mutual inductance, show variations through the entire
frequency range. These variations lead to errors during the modal
decoupling which consequentially result in errors in the time
domain during electromagnetic transient simulations.

The mixed routine was previously proposed as a correction pro-
cedure for transmission line models based on modal decoupling.
This modeling technique shows a constant percentage error of no
more than 8% for non-transposed transmission lines with length
from 10 km up to 1100 km. On the other hand, the entitled conven-
tional routine, by using the Clarke’s approach in the entire model-
ing/simulation process, shows major errors during modeling and
transient simulation of short non-transposed lines.

The literature on transmission line modeling describes that the
approach using the Clarke’s matrix is accurate for transmission
lines with vertical symmetry or ideally transposed. The same
approach for non-transposed lines with vertical symmetry implies
in more significant errors during parameters calculation of the
propagation modes (modal decoupling). The preliminary analysis
in the frequency domain shows that the self parameters have
major errors at high frequencies whereas variations in the mutual
parameters are practically constant in the frequency analysis. The
asymmetry in the impedance and admittance matrices, typical of
non-transposed lines, leads to inaccuracies in the line decoupling
that result in remaining mutual terms in the modal matrices [Zm]
and [Ym], denominated quasi-modes, which are directly related
to the errors in the electromagnetic transient simulations in the
time domain.

Another important conclusion is that the mixed routine repre-
sents a more efficient correction procedure on the conventional
routine for transmission lines up to 1000 km. The correction proce-
dure (mixed routine) shows to be less effective for long non-
transposed lines, with lengths above 1100 km.
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