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E finalmente eu gostaria de agradecer ao meu amor, Henrique, por todo carinho, amor, apoio e

companheirismo. Obrigada por me fazer acreditar mais em mim! Você me inspira a ser melhor todos os
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do Estado de São Paulo. O suporte foi imprescind́ıvel para realização desse trabalho.
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Abstract

Aspects of classical and quantum integrability are explored. Gauge transformations play a fundamental

role in both cases.

Classical integrable hierarchies have an underlying algebraic structure which brings universality for

the solutions of all the equations belonging to a hierarchy. Such universality is explored together with

the gauge invariance of the zero curvature equation to systematically construct the Bäcklund trans-

formations for the mKdV hierarchy, as well as to relate it with the KdV hierarchy. As a consequence

the defect-matrix for the KdV hierarchy is obtained and a few explicit Bäcklund transformations are

computed for both Type-I and Type-II. The generalization for super mKdV hierarchy is also explored.

We studied symmetries and degeneracies of families of integrable quantum open spin chains with

finite length associated to affine Lie algebras ĝ = A
(2)
2n , A

(2)
2n−1, B

(1)
n , C

(1)
n , D

(1)
n whose K-matrices

depend on a discrete parameter p (p = 0, ..., n). We show that all these transfer matrices have

quantum group symmetry corresponding to removing the pth node of the Dynking diagram of ĝ. We

also show that the transfer matrices for C
(1)
n and D

(1)
n also have duality symmetry and the ones for

A
(2)
2n−1, B

(1)
n and D

(1)
n have Z2 symmetries that map complex representations into their conjugates.

Gauge transformations simplify considerably the proofs by allowing us to work in a way that only

unbroken generators appear.

The spectrum of the same integrable spin chains with the addition of D
(2)
n+1 is then determined

using analytical Bethe ansatz. We conjecture a generalization for open chains for the Bethe ansatz

Reshetikhin’s general formula and propose a formula relating the Dynkin labels of the Bethe states

with the number of Bethe roots of each type.

Key-words: Integrable Hierarchies, Bäcklund transformations, quantum group symmetries, open

spin chains, Bethe ansatz.
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Resumo

Aspectos de integrabilidade clássica e quântica são explorados. Transformações de gauge têm papel

fundamental em ambos os casos.

Hierarquias integráveis clássicas tem uma estrutura algébrica subjacente que traz uma universa-

lidade para as soluções de todas as equações que a compoem. Essa universalidade é explorada jun-

tamente com a invariância da equação de curvatura nula por transformações de gauge para construir

sistematicamente as transformações de Bäcklund da hierarquia mKdV, assim como para relacioná-la

com a hierarquia KdV. Como uma consequência a matriz de defeito para a hierarquia KdV é obtida e

alguns exemplos expĺıcitos são calculados tanto para o Tipo-I quanto para o Tipo-II. A generalização

para a hierarquia mKdV supersimétrica também é discutida.

Nós estudamos simetrias e degenerecências de famı́lias de cadeias de spin quânticas integráveis com

comprimento finito associadas a algebras de Lie afins ĝ = A
(2)
2n , A

(2)
2n−1, B

(1)
n , C

(1)
n , D

(1)
n cujas matrizes

K dependem de um parâmetro discreto p (p = 0, ..., n). Nós mostramos que todas essas matrizes de

transferências têm simetrias de grupos quânticos correspondente a remover o nodo p do diagrama de

Dynkin de ĝ. Também mostramos que as matrizes de transferência para C
(1)
n e D

(1)
n têm também

simetria de dualidade enquanto A
(2)
2n−1, B

(1)
n e D

(1)
n têm simetrias Z2 que mapeiam representações

complexas em seus conjugados. Transformações de gauge simplificam consideravelmente as provas

pois permitem-nos trabalhar com apenas os geradores que não foram quebrados.

O espectro dessas matrizes de transferência juntamente com D
(2)
n+1 é então calculado usando o

método do Bethe ansatz anaĺıtico. Nós conjecturamos uma generalização para cadeias de spin abertas

para a fórmula de Reshetikhin e propomos uma fórmula relacionando os ı́ndices de Dynkin dos estados

de Bethe com o número de ráızes de Bethe de cada tipo.

Palavras-chave: Hierarquias Integráveis, Transformações de Bäcklund, simetrias de grupos quânticos,

cadeias de spin abertas e Bethe ansatz.
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Preface

This PhD thesis is divided in two completely separated parts. The Part 1 is devoted to classical

integrable models while the Part 2 is focused in quantum integrable models. Since the models we

work in each part are completely different we write separated introductions and conclusions for each

part.

The thesis is heavily based on the following published papers:

• R. I. Nepomechie and A. L. Retore, “The spectrum of quantum-group-invariant transfer matri-

ces,” Nucl. Phys. B 938, 266 (2019), https://arxiv.org/pdf/1810.09048.pdf.

• R. I. Nepomechie and A. L. Retore, “Surveying the quantum group symmetries of integrable

open spin chains,” Nucl. Phys. B 930, 91 (2018), https://arxiv.org/abs/1802.04864

• A. R. Aguirre, A. L. Retore, J. F. Gomes, N. I. Spano and A. H. Zimerman, “Defects in

the supersymmetric mKdV hierarchy via Bäcklund transformations,” JHEP 1801, 018 (2018),

https://arxiv.org/abs/1709.05568.

• J. F. Gomes, A. L. Retore and A. H. Zimerman, “Miura and generalized Bäcklund transformation

for KdV hierarchy,” J. Phys. A 49, no. 50, 504003 (2016), https://arxiv.org/abs/1610.

02303.

• J. F. Gomes, A. L. Retore and A. H. Zimerman, “Construction of Type-II Backlund Transforma-

tion for the mKdV Hierarchy,” J. Phys. A 48, 405203 (2015), https://arxiv.org/abs/1505.

01024.

and on the conference proceedings :

• J. F. Gomes, A. L. Retore, N. I. Spano and A. H. Zimerman, “Backlund Transformation for

Integrable Hierarchies: example - mKdV Hierarchy,” J. Phys. Conf. Ser. 597, no. 1, 012039

(2015), https://arxiv.org/abs/1501.00865.

but also includes some results and comments from the following works
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• R. I. Nepomechie, R. A. Pimenta and A. L. Retore, “The integrable quantum group invariant

A
(2)
2n−1 and D

(2)
n+1 open spin chains,” Nucl. Phys. B 924, 86 (2017), https://arxiv.org/abs/

1707.09260.

• A. R. Aguirre, A. L. Retore, N. I. Spano, J. F. Gomes and A. H. Zimerman, “Recursion Operator

and Bäcklund Transformation for Super mKdV Hierarchy,”, https://arxiv.org/abs/1804.

06463.

• N. I. Spano, A. L. Retore, J. F. Gomes, A. R. Aguirre and A. H. Zimerman, “The sinh-Gordon

defect matrix generalized for n defects,” https://arxiv.org/abs/1610.01856.

• A. R. Aguirre, J. F. Gomes, A. L. Retore, N. I. Spano and A. H. Zimerman, “An alternative

construction for the Type-II defect matrix for the sshG,” , https://arxiv.org/abs/1610.

01855.

and on the following paper which was already submitted to J.Phys.A

• R. I. Nepomechie, R. A. Pimenta and A. L. Retore, “Towards the solution of an integrable D
(2)
2

spin chain, https://arxiv.org/abs/1905.11144

Since the two parts of the thesis are very different some notations were used in both parts meaning

different things. K-matrix for example has two completely different meaning in Part 1 and Part 2. I

ask the reader to keep this in mind when reading this work.
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Chapter 1

Introduction

Classical integrable models are known to have an infinite number of conserved charges that guarantees the
stability of their solitons solutions. Along the history they were studied in various approaches such as
inverse scattering method, the Lax method and the Zakharov-Shabat formulation [1]-[3]. These methods
are systematic providing ways to construct many integrable non-linear differential equations such as the
Korteweg-de Vries (KdV) equation, the non-linear Schrödinger (NLS) equation and the Sinh-Gordon (S-G)
equation .

There is another method, however, which has several interesting qualities. It consists of constructing
infinite towers of nonlinear integrable differential equations starting from a zero curvature equation [5, 6] and
an underlying graded affine algebra. These models are called integrable hierarchies. The advantage of them
is that due to their algebraic construction one can compute the features of an infinite number of differential
equations in a universal way. For example, ŝl(2) with a principal gradation generates the so-called mKdV
hierarchy. This process turns clear that both mKdV (modified KdV) equation and S-G equation are part of
the same integrable hierarchy and therefore have soliton solutions with the same general structure [4].

This method involves two (1+1)-dimensional gauge potentials Ax and AtN called Lax pair. While the
Ax is the same for all the equations within a hierarchy, each AtN is related to a different time evolution
and therefore generates a different evolution equation. The universality of the Ax in each hierarchy has a
fundamental role in the computation of many physical quantities in a general way.

The solutions of these models can be obtained through the so-called Dressing method [7]-[9] which makes
use of gauge transformations to create multi-soliton solutions by starting with a vacuum solution. The
Dressing method provides a way to simultaneously construct the soliton solutions for all the equations of a
given hierarchy.

Another interesting way to compute solutions of integrable models is called Bäcklund transformations
(BT). These Bäcklund transformations, among other applications, generate an infinite sequence of soliton
solutions from a non-linear superposition principle (see [10],[1],[11],[12]).

Bäcklund transformations have also been employed to describe integrable defects [13]-[17] in the sense
that two solutions of an integrable model may be interpolated by a defect at certain spatial position. After
the introduction of the defect, the integrability is only preserved if the two field configurations are related by a
Bäcklund transformation. Under such formulation the energy and momentum have to be modified to take into
account the contribution of the defect [13]. Well known (relativistic) integrable models as the sine (sinh)-
Gordon, Tzitzeica [18], Lund-Regge [14] and other (non-relativistic) models as Non-Linear Schroedinger
(NLS), mKdV, etc have been studied within such context [16]. Also the N=1 and N=2 supersymmetric
sinh-Gordon and the super Liouville were studied using integrable defects.

There are two known types of Bäcklund transformations. The first involves only the fields of the theory
and is called Type-I. In particular, it may be observed that the space component of the Type-I Bäcklund
transformations for the mKdV and sinh-Gordon equations coincides for their corresponding fields [10]. Today
we know that this happens because they are part of the same integrable hierarchy (the mKdV hierarchy) and
that actually all the equations in this hierarchy have the same spatial part of the Bäcklund transformation.

More recently a new type of Bäcklund transformations involving auxiliary fields was shown to be com-
patible with the equations of motion for the sine (sinh)-Gordon and Tzitzeica models [18]. These are known
as Type-II Bäcklund transformations. They are obtained by introducing two defects instead of only one and
taking the limit where both defects are the same point is [21]-[27].

Historically all the methods to compute Bäcklund transformations require an individual computation
for each model. When studying integrable defects, for example, for each model we want to compute the
Bäcklund transformations we need to construct its Lagrangian. Although this would be in principle feasible
and would bring a lot of interesting discussions, it would also be very hard. This is because the Lagrangians

15
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for differential equations with high orders could take very complicated forms.
In [19] it was shown that the Bäcklund transformations may be constructed from gauge transformation

relating two field configurations of the same equation of motion. Such gauge transformation is encoded in
the so-called K-matrix (or defect matrix).

The outline of Part 1 is as follows. The chapter 2 is dedicated to explain the construction of integrable
hierarchies and to extend the results in [19] to all integrable equations of the mKdV hierarchy[20], [28]. This
is again a consequence of the universality of the spacial Lax along the hierarchy. In the chapter 3 we construct
the KdV hierarchy starting from the Lax pair of the mKdV hierarchy and using gauge transformations. As a
consequence we also obtain the K-matrix of the KdV hierarchy in terms of the one for the mKdV hierarchy.
We also introduce the idea that the Type-II K-matrix can be constructed as a product of two Type-I K-
matrices and discuss some solutions [29]-[30]. The Chapter 4 is dedicated to the generalization for the super
mKdV hierarchy[31]-[33]. In Chapter 5 we present some conclusions and further developments.



Chapter 2

Integrable Hierarchies and Bäcklund
transformations

The outline of this chapter is as follows. The zero curvature equation is introduced in section 2.1. In section
2.2 is introduced the concept of integrable hierarchy. The construction of integrable hierarchies is discussed
and quickly exemplified using the mKdV, AKNS and KdV hierarchies. The gauge invariance of the zero
curvature equation is presented in section 2.3. The section 2.4 is dedicated to introduce the concept of
Bäcklund transformations as well as to discuss a its construction using gauge transformations as well as
integrable defects.

2.1 Zero Curvature equation

Consider a linear system, with coordinates (x, tN ),

(∂x +Ax)ψ = 0,

(∂tN +AtN )ψ = 0, (2.1)

in which, Ax and AtN are two-dimensional gauge potentials, in our case written as matrices whose elements
are functions of the n fields of the theory and their derivatives of any order. They are known as Lax pair.

By acting with ∂x in the second equation of (2.1) and with ∂tN on the first equation and then subtracting
the results we obtain

[∂x +Ax, ∂tN +AtN ] = 0. (2.2)

which is called zero curvature equation.
In (1+1) dimensions, we say that a model is classically integrable if it can be generated by a zero curvature

representation.
The zero curvature equation plays a very important role in classical integrability since it enables the

construction of the so called integrable hierarchies. An integrable hierarchy is an infinite set of integrable
equations constructed from a given algebra. The differential equations belonging to the same integrable
hierarchy have several properties in common such as: its equations have soliton solutions in a universal form
and also its Bäcklund transformations can be constructed in a systematic way. Such universality due to their
algebraic structure makes possible to understand features of an infinite number of equations at once.

Usually, for each hierarchy, Ax remains the same for all its equations while each AtN gives rise to a new
differential equation. The order of the differential equation is directly related with N . For example, for the
mKdV (modified Kortweg-deVries) hierarchy, the At3 generates the mKdV equation

4∂t3v = ∂3
xv − 6v2∂xv, (2.3)

while At−1 generates the Sinh-Gordon equation

∂t−1
v = e2

∫ x
0
v(y,t−1)dy − e−2

∫ x
0
v(y,t−1)dy. (2.4)

So, the At3 generates a non-linear differential equation with order 3, while At−1
generates one with one

integral, so we can say, that it has order −1.
Notice that the equation (2.4) becomes the usual Sinh-Gordon equation1

1Notice that for Sinh-Gordon equation t−1 = z and x = z̄ are the light-cone coordinates .

17
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∂t−1
∂xφ = e2φ − e−2φ (2.5)

if we change variable v = ∂xφ.
Let us now see more in detail how such hierarchies are constructed.

2.2 Constructing integrable hierarchies

In order to construct an integrable hierarchy we need:

• choose an algebra;

• choose a gradation of this algebra;

• choose a semi simple element E(1).

Let us consider the ŝl(2) centerless Kac-Moody algebra.
The gradation operator Q decomposes the algebra in graded subspaces in the form

Ĝ = ⊕Gm, (2.6)

where
[Q,Gn] = nGn, (2.7)

with n ∈ Z and it is called degree. In addition, due to Jacobi identity we have

[Gn,Gm] ⊂ Gm+n. (2.8)

As we mentioned, in this and on the next chapter we are dealing with hierarchies related to a ŝl(2) centerless

Kac-Moody algebra. It is generated by 2 h(m) = λmh, E
(m)
±α = λmE±α, λ ∈ C, m ∈ Z satisfying

[h(m), E
(n)
±α] = ±2E

(m+n)
±α , [E(m)

α , E
(n)
−α] = h(m+n). (2.9)

For this algebra two different gradations will be considered: the principal gradation and the homoge-
neous gradation.

The principal gradation is defined by Qp = 2λ d
dλ + 1

2h and generates the so called mKdV hierarchy

(modified Kortweg-de-Vries hierarchy). Qp decomposes the affine ŝl(2) algebra into graded subspaces accord-
ing to powers of the spectral parameter λ (2.6)-(2.8), where the subspaces G2m, G2m+1 and G2m−1 contain
the following generators

G2m = {h(m) = λmh},
G2m+1 = {E(m)

α = λmEα},
G2m−1 = {E(m)

−α = λmE−α} (2.10)

i.e.

[Qp,G2n+1] = (2n+ 1)G2m+1, [Qp,G2n−1] = (2n− 1)G2m+1 and [Qp,G2n] = (2n)G2n. (2.11)

The homogeneous gradation is defined by Qh = ζ d
dζ and it generates the AKNS hierarchy (Ablowitz-

Kaup-Newel-Segur hierarchy) and the KdV hierarchy (Kortweg-de-Vries hierarchy). Qh decomposes the affine

ŝl(2) algebra into graded subspaces according to powers of the spectral parameter ζ3 (2.6)-(2.8) where the
subspace Gn contains the following generators

Gn =
{
h(n) = ζnh,E(n)

α = ζnEα, E
(n)
−α = ζnE−α

}
, (2.12)

i.e.

[Qh,Gn] = nGn. (2.13)

2The representation used is: h =

(
1 0
0 −1

)
, Eα =

(
0 1
0 0

)
and E−α =

(
0 0
1 0

)
3Notice that for the principal gradation we are using λ as spectral parameter while in the homogeneous gradation we are

using ζ as spectral parameter. This is to avoid some confusion.
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After choosing a gradation, the next step is to construct the Lax pair (Ax, AtN ) of the model. Let us
define Ax = A0 + E(1) where E(1) is a semi simple element and has degree 1, while A0 contains the fields of
the theory and has degree 0. But how to construct E(1) and A0? First of all, by choosing a gradation we
automatically know which generators have degree 0 and 1, according to (2.10) and (2.12). We do now a new
decomposition in the algebra: Ĝ = K ⊕M where K stands for Kernel and M is the image. The kernel is
defined as

K =
{
f ∈ Ĝ/

[
f,E(1)

]
= 0
}

(2.14)

and M is its complement. Notice that to choose a semi simple E(1) means that K and M have to satisfy

[K,K] ⊂ K, [K,M] ⊂M and [M,M] ⊂ K. (2.15)

With these informations we are able to construct the spatial Lax operator Ax. And how about the AtN ? In
order to find AtN we separate the hierarchy into two sub-hierarchies: the positive sub-hierarchy and the
negative sub-hierarchy.

2.2.1 Positive sub-hierarchy

The positive integrable sub-hierarchy is obtained by writing AtN = D(N) +D(N−1) + ...+D(0) in such a way
that the zero curvature equation decomposes (2.2) according to the graded structure as

[E(1), D(N)] = 0

[E(1), D(N−1)] + [A0, D
(N)] + ∂xD

(N) = 0

... =
...

[A0, D
(0)] + ∂xD

(0) − ∂tNA0 = 0, (2.16)

Here D(i) ∈ Gi. The equations in (2.16) allows solving for D(i), i = 0, · · ·N and the last equation in (2.16)
yields the time evolution for fields in A0. We should point out that D(i) are constructed systematically for
each value of N and so is AtN .

2.2.2 Negative sub-hierarchy

The negative integrable sub-hierarchy is obtained by writing At−N = D(−N) + D(−N+1) + ... + D(−1). The
zero curvature equation then is decomposed in

∂xD
(−N) + [A0, D

(−N)] = 0

∂xD
(−N+1) + [A0, D

(−N+1)] + [E(1), D(−N)] = 0

... =
...

∂xD
(−1) + [A0, D

(−1)] + [E(1), D(−2)] = 0

[E(1), D(−1)]− ∂t−NA0 = 0, (2.17)

Notice that just as in the positive case, the equation with degree zero is the only one which depends on
the t−N . So, we start by solving the equation with degree equal to −N and recursively solve until the one
with degree 0.

We discuss in the following the mKdV hierarchy, the AKNS hierarchy and the KdV hierarchy.

2.2.3 mKdV hierarchy

The informations about E(1) and A0 for all the hierarchies we work on this and on the next chapter can be
find in the Table 2.1

Gradation Gradation Operator E(1) A0 Hierarchy

principal Qp = 2λ d
dλ + 1

2h E
(0)
α + E

(1)
−α v(x, tN )h mKdV

homogeneous Qh = ζ d
dζ h(1) q(x, tN )Eα + r(x, tN )E−α AKNS

homogeneous Qh = ζ d
dζ h(1) −Eα + J(x, tN )E−α KdV

Table 2.1: In this table we put the explicit forms of E(1) and A0 for the hierarchies considered.
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Let us start with the mKdV hierarchy and therefore with the principal gradation. The semi simple element

E(1) is defined as E(1) = E
(0)
α +E

(1)
−α while A0 = v(x, tN )h. Notice that there is not much freedom to choose

E(1) and A0 in this case, since the only objects in G1 are E
(0)
α and E

(1)
−α and the only object in G0 is h.

Positive sub-hierarchy

Let us do an example in order to make things clearer. Consider N = 3 and therefore At3 = D(3) + D(2) +
D(1) +D(0) with D(i)’s as linear combinations of the generators in Gi. For N = 3, (2.10) becomes

G3 = {E(1)
α , E

(2)
−α},

G2 = {h(1)},
G1 = {E(0)

α , E
(1)
−α},

G0 = {h}. (2.18)

Consequently,

D(3) = a3E
(1)
α + b3E

(2)
−α,

D(2) = c2h
(1),

D(1) = a1E
(0)
α + b1E

(1)
−α,

D(1) = c0h. (2.19)

Until this moment we do not know what are the ai’s, bi’s and ci’s. In order to compute them we substitute
the D(3) in the first equation in(2.16) for N = 3. From this equation we conclude that D(3) needs to be on the
Kernel K. So, b3 = a3. Now we substitute this new D(3) and the D(2) (from (2.19)) in the second equation
in (2.16) and solving the resulting equations we obtain a3 = constant ≡ 1 and c2 = v. By continuing this
process we find that the complete solution is

a3 = b3 ≡ 1, b2 = v, a1 = −1

2
v2 +

1

2
∂xv, b1 = −1

2
v2 − 1

2
∂xv and c0 =

1

4

(
∂2
xv − 2v3

)
, (2.20)

while the last equation in (2.16) is the one which has the time-derivative and therefore it gives the time-
evolution. By substituting on it D(0) with c0 given by (2.20) we obtain the mKdV equation

4∂t3v − ∂x
(
∂2
xv − 2v3

)
= 0 mKdV (2.21)

which is the equation that names the hierarchy.
The first next few explicit equations are

16∂t5v − ∂x
(
∂4
xv − 10v2(∂2

xv)− 10v(∂xv)2 + 6v5
)

= 0

(2.22)

64∂t7v − ∂x
(
∂6
xv − 70(∂xv)2(∂2

xv)− 42v(∂2
xv)2 − 56v(∂xv)(∂3

xv)
)

+ ∂x
(
14v2∂4

xv − 140v3(∂xv)2 − 70v4(∂2
xv) + 20v7

)
= 0

· · · etc. (2.23)

constructed from N = 5 and N = 7, respectively.
Notice that, for positive mKdV sub-hierarchy we did not mentioned any differential equation for even

N . This has a very fundamental reason. If we start with an even N , let us say N = 2n, D(N) has to be
of the form D(2n) = h(n) (due to (2.10)) which belongs to the image M. But the first equation in (2.16)
requires D(N) being in the Kernel. Therefore if we try to construct a differential equation with even order
in the mKdV hierarchy we just find that all the coefficients are equal to zero. Notice that the equations
(2.21)-(2.23) are invariant under v → −v.
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Negative sub-hierarchy

An interesting fact is that if we do the same procedure for the negative sub-hierarchy, for v = ∂xφ with N = 1
we will obtain the Sinh-Gordon equation

∂t−1
∂xφ = 2 sinh(2φ) (2.24)

and for N = 3 and N = 5 we have

∂t−3∂xφ = 4 e−2φd−1
(
e2φd−1 (sinh 2φ)

)
+ 4 e2φd−1

(
e−2φd−1 (sinh 2φ)

)
∂t−5

∂xφ = 8 e−2φd−1
(
e2φd−1

(
e−2φd−1

(
e2φd−1 (sinh 2φ)

)
+ e2φd−1

(
e−2φd−1 (sinh 2φ)

)))
+

8 e+2φd−1
(
e−2φd−1

(
e−2φd−1

(
e2φd−1 (sinh 2φ)

)
+ e2φd−1

(
e−2φd−1 (sinh 2φ)

)))
.... (2.25)

where d−1f =
∫ x

f(y)dy. And for N = 2 and N = 4 we have

∂t−2∂xφ = 4e2φd−1
(
e−2φ

)
+ 4e−2φd−1

(
e2φ
)
,

∂t−4
∂xφ = 4e2φd−1

(
e−2φ

(
e2φd−1

(
e−2φ

)
+ e−2φd−1

(
e2φ
)))

+

4e−2φd−1
(
e+2φ

(
e2φd−1

(
e−2φ

)
+ e−2φd−1

(
e2φ
)))

(2.26)

Notice, that opposite to what happens in the positive sub-hierarchy we do not have any restriction for
even N . For the negative sub-hierarchy decomposition (2.17) the first equation does not require that D(N)

commutes with the E(1) and therefore does not create any difficulty.
However, the equations constructed from even N do have some properties that are different from the

ones with odd N . The first property is that while the equations for odd N are invariant under φ→ −φ (by
inspection on equations (2.24)-(2.25))the ones for even N are not (see (2.26)). The second property is that
on contrary of odd N (2.24)-(2.25), the equations for even N (2.26) do not have the vacuum φ = 0 as a
solution.

2.2.4 AKNS hierarchy

Following the same procedure, but now considering the homogeneous gradation and E(1) and A0 as in the
Table 2.1 we obtain for N = 2

∂t2q = −α
2
∂2
xq + γ∂xq + αq2r

∂t2r =
α

2
∂2
xr + γ∂xr − αr2q (2.27)

where α and γ are constants. Notice that for q = ψ and r = ψ∗ we obtain the nonlinear Schrödinger equation.
Now for N = 3 we obtain

∂t3q =
α

4
∂3
xq −

3

2
αrq∂xq −

1

2
γ∂2

xq + γq2r

∂t3r =
α

4
∂3
xr −

3

2
αqr∂xr +

1

2
γ∂2

xr − γr2q. (2.28)

The above equations are just examples. One could continue obtaining higher and higher degree differential
equations by assuming larger values of N .

2.2.5 KdV hierarchy

By making q = −1 and r = J in the AKNS Lax and doing again the computations for N = 3 we obtain the
KdV equation

4∂t3J = ∂3
xJ + 6J∂xJ, (2.29)

Notice that by doing γ = 0, q = −1 and r = J directly on equation (2.28) we obtain the equation (2.29).
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Similarly for At5 and for At7 , (details are given in the appendix A), we find the Sawada-Kotera equation
[12]

16∂t5J = ∂5
xJ + 20∂xJ∂

2
xJ + 10J∂3

xJ + 30J2∂xJ, (2.30)

and

64∂t7J = ∂7
xJ − 70∂2

xJ∂
3
xJ + 42∂xJ∂

4
xJ + 70(∂xJ)3 + +14J∂5

xJ

+280J∂xJ∂
2
xJ + 70J2∂3

xJ + 140J3∂xJ, (2.31)

respectively. Higher flows (time evolutions) can be systematically constructed for generic N from the same
formalism.

2.3 Gauge-invariance of the zero curvature equation

If we do a gauge transformation on the Lax pair as follows

A′x = KAxK
−1 − ∂xKK−1, (2.32)

A′tN = KAtNK
−1 − ∂tNKK−1 (2.33)

the zero curvature equation (2.2) remains invariant.

The gauge invariance of the zero curvature equation plays a very important in finding universal features of
integrable hierarchies. It allows the systematic construction of universal soliton solutions for the hierarchies
through the so called Dressing Method [7]-[9]. Also, it allows the generation of Bäcklund transformations for
entire hierarchies in a systematic way as we will see in next section and next two chapters.

2.4 Bäcklund transformations

2.4.1 Basics

Bäcklund transformations (BT) [10, 2, 1, 3] consists of a system of equations which relates two solutions
of the same nonlinear differential equation 4. Bäcklund transformations have at least one order in x less than
the original equation which makes them, in most of the cases, a lot easier to solve. Also, they depend on at
least one new parameter (which is not present on the original equation) and is called Bäcklund parameter.

Usually nonlinear differential equations can be very hard to solve. What makes BT so important is that
they work as generating functions of new solutions given that you already know some solutions (at least one).
One simple example is that if you know that the vacuum is a solution, you can substitute it in the BT and
then solve the system to find a 1-soliton solution.

Let us see the Bäcklund transformations of the Sinh-Gordon equation as an example. The equations

∂t−1 (φ1 + φ2) = − 4

β
sinh (φ1 − φ2)

∂x (φ1 − φ2) = −β sinh (φ1 + φ2) (2.34)

are the BT for the Sinh-Gordon equation (2.24). The β is the Bäcklund parameter, while φ1 and φ2 are two
solutions of the S-G equation. Notice that while the S-G equation has two derivatives, one in x and one in
t−1, its Bäcklund transformations have or one derivative in t−1 or one derivative in x. If we act with ∂x on
the first equation on (2.34) and use the second one, the β disappears and we obtain two S-G equations, one
for φ1 and one for φ2.

4There are also BT which can relate a solution of a differential equation with a solution of another differential equation.
Those, however, will not be considered in this thesis.
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The solutions of the S-G equation for vacuum, 1-soliton and 2-soliton solutions are given by 56.

φ0−sol = 0

φ1−sol = ln

(
1 +R1ρ1

1−R1ρ1

)
φ2−sol = ln

(
1 + δ (ρ1 − ρ2) + ρ1ρ2

1− δ (ρ1 − ρ2) + ρ1ρ2

)
(2.35)

where ρi = Exp
(
2kix+ 2k−1

i t−1

)
, R1 is a constant and δ = k1+k2

k1−k2
.

Φ 1
(k ) 1

Φ1
(k )2

Φ0
=0 Φ2

(k ,k )1 2

k 1 
k  2

k 1 k  2

Figure 2.1: Permutability theorem for
solutions of vacuum, one-soliton and
two-solitons.

The solutions were introduced now in order to
present a very important theorem: the permutabil-
ity theorem. It says that if we start with a vac-
uum solution φ0−sol and using the BT go to 1-soliton
solution φ1−sol(k1) with β = f(k1) and then to a
φ2−sol(k1, k2) with β = f(k2) we will obtain a result
which is completely equivalent to the one obtained
by going from φ0−sol to 1-soliton solution φ1−sol(k2)
with β = f(k2) and then to a φ2−sol(k1, k2) with
β = f(k1) as is represented in the figure 2.1.

Another possible solution is to start with a 1-soliton and obtain another 1-soliton with a phase difference.

If we start with a φ(1−sol) = ln
(

1+R1ρ1

1−R1ρ1

)
we could obtain φ(1−sol) = ln

(
1+R2ρ1

1−R2ρ1

)
with R2 =

(
2k1+β
2k1−β

)
R1.

The Bäcklund transformations presented in this section are called Type-I Bäcklund transformations. They
depend only on the fields of the theory φ1 and φ2 and have one Bäcklund parameter only (called β). There is
another type which was introduced by Corrigan et al [18] in the context of defects which depends on the fields
of the theory but also on an auxiliary field which they called Λ and depends on two Bäcklund parameters.

2.4.2 Gauge transformations and the Bäcklund transformations for mKdV hi-
erarchy

Consider a gauge transformation as in (2.33) but now make
(
A′x, A

′
tN

)
≡ (Ax(φ2), AtN (φ2)) and (Ax, AtN ) ≡

(Ax(φ1), AtN (φ1)) in such a way that (2.33) becomes

∂xK = KAx(φ1)−Ax(φ2)K (2.36)

∂tNK = KAtN (φ1)−AtN (φ2)K (2.37)

i.e. the K matrix connects two field configurations φ1 and φ2.
But how to obtain the K? Remember that Ax(φ) is the same for the whole hierarchy. So if we can find

K using only the spacial part of the Lax we automatically have a K which is valid for the entire hierarchy.
Notice that both Type-I and Type-II Bäcklund transformations for S-G equation were well known. What we
did was to write K as a polynomial function on the spectral parameter, substitute the Ax(φi) (which we had
from the hierarchy construction) on the first equation of (2.37) and solve for the coefficients7 in order to find
the spacial part of the Type-I BT and the spacial part of Type-II BT.

By doing this we found

KType−I =

[
1 −β

2λ e
−p

−β2 ep 1

]
and KType−II =

[
1− 1

σ2λe
q −β

2σλe
Λ−p (eq + e−q + η)

− 2
σ e

p−Λ 1− 1
σ2λe

−q.

]
(2.38)

Using those transformations, we explicitly constructed the Bäcklund transformations for several equations
of the mKdV hierarchy, including many in the negative sub-hierarchy (including with even N). In order to

5The solution of any other equation with odd order in the mKdV hierarchy is the same as (2.35) by just making −1→ N in
the definition of ρi.

6The equations for even N will be very similar, except that vacuum is φ = constant nonzero and that we have to add a
constant in the 1-soliton and 2-soliton solutions.

7In order to see the complete calculation see the appendix B of [my first proceedings]
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see some examples please see [20, 28]. But since the K matrix is general we could construct the Bäcklund
transformations for any equation in the mKdV hierarchy.

We would like to highlight that the K matrix for Type-II was already developed before by [19]. Our
contribution in this part was to notice that since the K could be constructed using only the spacial part of
the Lax pair we could use this K to obtain any Bäcklund transformation in the hierarchy.

2.4.3 Integrable defects

There are also applications of Bäcklund transformations to describe integrable defects [13, 16, 18] in the
sense that one solution when hits a defect becomes another solution through Bäcklund transformations. So,
it is possible to compute Bäcklund transformations using Lagrangian defects. It is considered a line and
introduced a defect in x = 0. In each side of the defect we have a theory described by φ1 and φ2 respectively.
In order to preserve the integrability after the introduction of the defect the φ1 and φ2 have to satisfy a Type-I
Bäcklund transformation at the defect point. Historically the way the Type-II defect was introduced was by
considering two defects, one at a point x1 and one at a point x2, and considering a field φ1 in (−∞, x1), a
field Λ in (x1, x2) and a field φ2 in (x2,∞). Then they took the limit of x2 → x1 and obtained a Bäcklund
transformation depending on two parameters and on the fields φ1, φ2 and Λ.

We thought that maybe something similar could be done using K matrices (defect matrices). In chapter
3 one of the things we show is that the Type-II K matrix can be obtained by the product of two Type-I K
matrices, i.e. KType−II(φ1, φ2) = KType−I(φ1, φ0)KType−I(φ0, φ2) [29]. In the proceedings [30] we discuss
the generalization for n-defects. And in [31] we use this idea to reconstruct the K matrix for the super
Sinh-Gordon equation.

Another thing we show in the next chapter is related with Miura transformations. It is well known that
one can relate the mKdV and the KdV equations through Miura transformations. What we show is that this
can be generalized in order to connect the whole mKdV hierarchy with the whole KdV hierarchy [29], by
using a sequence of two gauge transformations. This allows us also to construct the K matrix for the KdV
hierarchy using the known one for the mKdV hierarchy, and therefore to have the Bäcklund transformations
of all the equations of the KdV hierarchy.

The chapter 4 will be dedicated to construct explicitly the Bäcklund transformations for the super mKdV
hierarchy.



Chapter 3

Miura and Generalized Bäcklund
transformations for KdV hierarchy

This chapter is divided in three main parts. The section 3.1 is dedicated to construct the KdV hierarchy
through gauge transformations applied on the Lax pair of the mKdV hierarchy. In the section 3.2 we present
the construction of the K matrix for the KdV hierarchy using the one for the mKdV hierarchy and the results
obtained in section 3.1. In this same section, we show some solutions of the Type-I Bäcklund transformations
constructed in this section. The section 3.3 is then dedicated to the construction of the Type-II K-matrix for
the KdV hierarchy. Actually, we start by showing that the mKdV Type-II K-matrix can be obtained by the
product of two Type-I K-matrices. And then we proceed to construct the one for the KdV hierarchy. Again,
some solutions are discussed.

3.1 The Algebraic Formalism for KdV Hierarchy

Following the algebraic formalism described in the chapter 2 we recall that the nonlinear equations of the
mKdV hierarchy can be derived from the zero curvature representation(2.2) underlined by an affine ŝl(2)
centerless Kac-Moody algebra and using a principal gradation. With this in mind we discuss in this section
the construction of the KdV using a different approach from the one discussed in the section 2.2.5. The
gauge transformations will be again a powerful tool for the process. The procedure will consist in construct
the KdV hierarchy starting from a mKdV hierarchy.

Consider now the global gauge transformation generated by

g1 =

(
ζ 1
ζ −1

)
, ζ2 = λ (3.1)

which transforms Aprincx,mKdV = E(1) + v(x, tN )h =

(
v 1
λ −v

)
, into

Ahomx,mKdV = g1

(
Aprincx,mKdV

)
g−1

1 = g1

(
E(1) + v(x, tN )h

)
g−1

1 =

(
ζ v
v −ζ

)
, (3.2)

i.e., transforms the principal into homogeneous gradation, Qh = ζ d
dζ .

A subsequent local Miura-gauge transformation [39], [36]

g2(v, ε) =

(
1 ε
−εv −v + 2εζ

)
, (3.3)

transforms Ax,mKdV → Ax,KdV . i.e.,

Ax,KdV = g2(v, ε)Ahomx,mKdV g
−1
2 (v, ε)− ∂xg2(v, ε)g−1

2 (v, ε) =

(
ζ −1
J −ζ

)
(3.4)

and realizes the Miura transformation,

J = ε∂xv − v2, ε2 = 1. (3.5)

25
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We should emphasize that for each solution v(x, tN ) of the evolution equations for the mKdV hierarchy, the
Miura transformation (3.5) generates two towers of solutions, Jε(x, tN ), ε = ±1, of the KdV hierarchy [36].
The zero curvature under the homogeneous gradation

[∂x +Ax,KdV , ∂tN +AtN ,KdV ] = 0, (3.6)

with AtN ,KdV = D̃(N) + D̃(N−1) + · · ·+ D̃(0), D̃(j) ∈ G̃j yields the KdV hierarchy equations of motion. For
instance

At3,KdV =

[
ζ3 + 1

2ζJ + 1
4∂xJ −ζ2 − 1

2J
ζ2J + 1

2ζ∂xJ + 1
4∂

2
xJ + 1

2J
2 −ζ3 − 1

2ζJ − 1
4∂xJ

]
(3.7)

yields the KdV equation

4∂t3J − ∂3
xJ − 6J∂xJ = (ε∂x − 2v) [4∂t3v − ∂x(∂2

xv − 2v3)] = 0, (3.8)

Similarly from At5 and for At7 , given in the appendix, we find the Sawada-Kotera equation [12]

16∂t5J − ∂5
xJ − 20∂xJ∂

2
xJ − 10J∂3

xJ − 30J2∂xJ

= (ε∂x − 2v) [16∂t5v − ∂x(∂4
xv − 10v2∂2

xv − 10v(∂xv)2 + 6v5)] = 0,

(3.9)

and 1

64∂t7J − ∂7
xJ − 70∂2

xJ∂
3
xJ − 42∂xJ∂

4
xJ − 70(∂xJ)3 − 14J∂5

xJ

− 280J∂xJ∂
2
xJ − 70J2∂3

xJ − 140J3∂xJ

= (ε∂x − 2v) (64∂t7v − ∂x(∂6
xv − 70(∂xv)2∂2

xv − 42v(∂2
xv)2 − 56v∂xv∂

3
xv

− 14v2∂4
xv + 140v3(∂xv)2 + 70v4∂2

xv − 20v7)) = 0 (3.10)

respectively. Eqns.( 3.8-3.10) are displayed as explicit examples as illustration of the formalism. Higher
flows (time evolutions) can be systematically constructed for generic N from the same formalism.

3.2 Bäcklund Transformation

3.2.1 mKdV

In this section we start by noticing that the zero curvature representation (2.2) and (3.6) are invariant under
gauge transformations of the type

Aµ(φ, ∂xφ, · · · )→ Ãµ = K−1AµK +K−1∂µK, (3.11)

where Aµ stands for either AtN or Ax.
The key ingredient of this section is to consider two field configurations φ1 and φ2 embedded in Aµ(φ1)

and Aµ(φ2) satisfying the zero curvature representation and assume that they are related by a Bäcklund-
gauge transformation generated by K(φ1, φ2) preserving the equations of motion (e.g,, zero curvature (2.2)
or (3.6) ) , i.e.,

K(φ1, φ2)Aµ(φ1) = Aµ(φ2)K(φ1, φ2) + ∂µK(φ1, φ2). (3.12)

If we now consider the Lax operator L = ∂x +Ax for mKdV case within the principal gradation,

Ax,mKdV = E(1) +A0 =

[
∂xφ(x, tN ) 1

λ −∂xφ(x, tN )

]
(3.13)

is common to all members of the hierarchy defined by (2.2). We find that

K(φ1, φ2)Ax,mKdV (φ1) = Ax,mKdV (φ2)K(φ1, φ2) + ∂xK(φ1, φ2), (3.14)

where the Bäcklund-gauge generator K(φ1, φ2) is given by [20], [28]

K(φ1, φ2) =

[
1 − β

2λe
−(φ1+φ2)

−β2 e(φ1+φ2) 1

]
(3.15)

1 In general, we find KdV (J) = (ε∂x − 2v)mKdV (v).
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and β is the Bäcklund parameter. Eqn. (3.14) is satisfied provided

∂x (φ1 − φ2) = −β sinh (φ1 + φ2) . (3.16)

For the sinh-Gordon (s-g) model, the equations of motion ∂t∂xφa = 2 sinh 2φa, a = 1, 2 are satisfied if we
further introduce the time component of the Bäcklund transformation,

∂t (φ1 + φ2) =
4

β
sinh (φ2 − φ1) . (3.17)

Eqn. (3.17) is compatible with (3.12) for Aµ = AtN with

At,s−g =

[
0 λ−1e−2φ

e2φ 0

]
. (3.18)

For higher graded time evolutions the time component of the Bäcklund transformation can be derived
from the appropriated time component of the two dimensional gauge potential. Several explicit examples
within the positive and negative graded mKdV sub-hierarchies were discussed in [20]. We now give a general
argument that the Bäcklund Transformation derived from the gauge transformation (3.14) for arbitrary N
provides equations compatible with the eqn. of motion. Consider the zero curvature representation for certain
field configuration, namely φ1, i.e.,

[∂x +Ax(φ1), ∂tN +AtN (φ1)] = 0. (3.19)

Under the gauge transformation,

K(φ1, φ2)[∂x +Ax(φ1), ∂tN +AtN (φ1)]K(φ1, φ2)−1

= [K(∂x +Ax(φ1))K−1,K(∂tN +AtN (φ1))K−1]

= [∂x +Ax(φ2), ∂tN +AtN (φ2)] = 0. (3.20)

where the last equality comes from our assumption (3.14).

The gauge transformation of the first entry in the zero curvature representation implies the x-component
of the Bäcklund transformation (3.16). Since the zero curvature (3.19) and (3.20) implies that both φ1 and
φ2 satisfy the same equation of motion, the gauge transformation (3.14) for Aµ = AtN of the second entry in
(3.20) generates the time component of BT which, by construction has to be consistent with the equations
of motion with respect to time tN .

3.2.2 KdV

In order to extend the same philosophy to the KdV hierarchy recall the fact that the two dimensional
gauge potential Ax,KdV can be obtained by Miura-gauge transformation from the homogeneous mKdV gauge
potentials AhommKdV as in (3.4), i.e.,

Ax,KdV (J) = g2(v, ε)g1 (Ax,mKdV (v)) g−1
1 g−1

2 (v, ε)− ∂xg2(v, ε)g−1
2 (v, ε), (3.21)

where v = ∂xφ(x, tN ) By assuming (3.12) for the KdV hierarchy, i.e.,

K̃(J1, J2)Ax,KdV (J1) = Ax,KdV (J2)K̃(J1, J2) + ∂xK̃(J1, J2). (3.22)

the Bäcklund-gauge transformation for the KdV hierarchy K̃(J1, J2) constructed in terms of K(φ1, φ2) can
be written as

K̃ = g2(v2, ε2)
(
g1K(φ1, φ2)g−1

1

)
g2(v1, ε1)−1. (3.23)

At this stage we should recall that for each solution of the mKdV hierarchy v, the Miura transformation (3.5)
generates two solutions, Jεi = εi∂xvi − v2

i , ε = ±1 satisfying the associated equation of motion of the KdV
hierarchy. This is precisely why we assume ε1 and ε2 in eqn. (3.23) independent. In terms of mKdV variables
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vi = ∂xφi, K̃ is given for the particular case where ε1 = −ε2 ≡ ε and denote K̃(J1, J2) = K̃(ε1 = −ε2 ≡ ε) 2,

K̃(J1, J2)11 = 1− v1ε

ζ
− β

4ζ
(1− ε)e−p − β

4ζ
(1 + ε)ep

K̃(J1, J2)12 = −1

ζ

K̃(J1, J2)21 =
β

4ζ
(−v1(1 + ε) + v2(1− ε)) e−p

+
β

4ζ
(v1(1− ε)− v2(1 + ε)) ep − v1v2

ζ

K̃(J1, J2)22 = −1− v2ε

ζ
− β

4ζ
(1 + ε)e−p − β

4ζ
(1− ε)ep (3.24)

where p = φ1 + φ2. Substituting in eqn. (3.22) we find the following equations:

• Matrix element 11:

ζ−1 : J1 − ε∂xv1 −
1

2
βv1(ep − e−p) + v1v2 = 0 (3.25)

• Matrix element 12:

ζ−1 : v1 − v2 +
β

2
(ep − e−p) = 0 (3.26)

• Matrix element 21:

ζ0 : J1 + J2 +
βv1

2
(1 + ε)e−p − βv1

2
(1− ε)ep

− βv2

2
(1− ε)e−p +

βv2

2
(1 + ε)ep + 2v1v2 = 0 (3.27)

ζ−1 : ε(J1v2 − J2v1)− v1∂xv2 − v2∂xv1

− εβ

2
v1v2(ep − e−p) = 0 (3.28)

• Matrix element 22:

ζ−1 − J2 − ε∂xv2 −
βv2

2
(ep − e−p) = 0. (3.29)

Using the mixed Miura transformation, i.e., ε2 = −ε1 ≡ ε,

J1 = ε∂xv1 − v2
1 , J2 = −ε∂xv2 − v2

2 (3.30)

together with the mKdV Bäcklund transformation (3.16)

v1 − v2 = −β
2

(ep − e−p), (3.31)

we find that eqns. (3.25), (3.26), (3.28) and (3.29) are identically satisfied. Defining the new variable Q and
taking into account the Bäcklund eqn. (3.31) we find the following equality

1

2
Q = εv1 +

β

4
(1− ε)e−p +

β

4
(1 + ε)ep (3.32)

= εv2 +
β

4
(1 + ε)e−p +

β

4
(1− ε)ep. (3.33)

2Notice that K̃ is given in terms of mKdV variables v1, v2 and we need to rewrite it in terms of KdV variables J1, J2. This
requires solving Riccati eqn. v = v(J) (3.5)
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Eliminating v1 and v2 from eqns (3.32) and (3.33) we find

v1 =
ε

2
Q− β

4
(ε− 1)e−p − β

4
(ε+ 1)ep (3.34)

v2 =
ε

2
Q− β

4
(ε+ 1)e−p − β

4
(ε− 1)ep (3.35)

and henceforth

β

4
(−v1(1 + ε) + v2(1− ε)) e−p

+
β

4
(v1(1− ε)− v2(1 + ε)) ep − v1v2 =

β2

4
− Q2

4
. (3.36)

Eqn. (3.27) then becomes

J1 + J2 =
β2

2
− Q2

2
. (3.37)

From (3.32) and (3.33) we find that

Q = ε(v1 + v2) +
β

2
(ep + e−p) (3.38)

Acting with ∂x in (3.38) and using (3.30) and (3.31),

∂xQ = ε∂x(v1 + v2) +
β

2
(v1 + v2)(ep − e−p)

= ε∂x(v1 + v2)− (v1 − v2)(v1 + v2)

= J1 − J2

= ∂x (ω1 − ω2) (3.39)

where we have used Ji ≡ ∂xwi, i = 1, 2. It therefore follows that

Q = w1 − w2 (3.40)

and the Bäcklund transformation for the spatial component of the KdV equation becomes,

J1 + J2 = ∂xP =
β2

2
− (w1 − w2)2

2
, P = w1 + w2. (3.41)

which is in agreement with the Bäcklund transformation proposed in [11] and with [40].

In the new variable Q defined in (3.32) and (3.33) we rewrite the gauge-Bäcklund transformation K̃(J1, J2)
in (3.24) as

K̃(J1, J2, β) = −1

ζ

( −ζ + 1
2Q 1

−β2

4 + 1
4Q

2 ζ + 1
2Q

)
, (3.42)

Other cases with ε1 = ε2 = ±1 lead to trivial Bäcklund transformations in the sense that (3.22) for K̃(±1,±1)
is trivially satisfied for mKdV Bäcklund and Miura transformations (3.16) and (3.5). There is no new equation
relating the two KdV fields J1 and J2. From now on we shall only consider K̃(+1,−1) ≡ K̃ given in (3.42)
and Miura transformation given by (3.30)

We now discuss the extension of the Bäcklund transformation to the time component of the KdV hierarchy.
Notice that in the zero curvature representation the spatial component of the two dimensional gauge potential
Ax is the same for all flows and therefore universal among the different evolution equations. They differ from
the time component AtN written according to the algebraic graded structure and parametrized by the integer
N .

AtN ,KdV = D̃(N) + D̃(N−1) + · · ·+ D̃(0), D̃(j) ∈ G̃j . (3.43)

The Bäcklund-gauge transformation (3.42) acting on the potentials At3,KdV , At5,KdV and At7,KdV given by
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eqns. (A.2)- (A.4) of the appendix leads to the following Bäcklund equations respectively

4∂t3P = −Q∂2
xQ+

1

2

(
(∂xQ)2 + 3(∂xP )2

)
(3.44)

16∂t5P = −Q∂4
xQ+ ∂xQ∂

3
xQ+ 5∂xP∂

3
xP

+
1

2

(
5(∂2

xP )2 − (∂2
xQ)2

)
+

5

2
∂xP

(
(∂xP )2 + 3(∂xQ)2

)
(3.45)

64∂t7P = −Q∂6
xQ+ ∂xQ∂

5
xQ+ 7∂xP∂

5
xP − ∂2

xQ∂
4
xQ+ 14∂2

xP∂
4
xP

+ 35∂xQ∂
2
xQ∂

2
xP + 35∂xP∂xQ∂

3
xQ+

21

2
(∂3
xP )2 +

1

2
(∂3
xQ)2

+
35

2
∂xP

(
(∂2
xP )2 + (∂2

xQ)2
)

+
35

2
∂3
xP
(
(∂xP )2 + (∂xQ)2

)
+

105

4
(∂xP )2(∂xQ)2 +

35

8
(∂xP )4 +

35

8
(∂xQ)2, (3.46)

where ∂xP = J1 + J2. Equations (3.41) and (3.44) coincide with the Bäcklund transformation proposed in
[11] for the KdV equation. Equations (3.41) and (3.45) correspond to those derived for the Sawada-Kotera
equation in [40] 3. In the appendix we have checked the consistency between the spatial, (3.41) and time
components (3.44) -(3.46) of the Bäcklund transformations for N = 3, 5 and 7. By direct calculation, using
software Mathematica, we indeed recover the evolution equations (3.8)-(3.10). We would like to point out
that our method is systematic and provides the Bäcklund transformations for arbitrary time evolution in
terms of its time component 2-d gauge potential AtN ,KdV in terms of graded subspaces D̃(i), i = 0, · · ·N .
The examples given above for t3, t5 and t7 just illustrate the potential of the formalism.

3.2.3 Examples

• Vacuum - One soliton solution

Consider φ1 = 0 and φ2 = ln( 1+ρ
1−ρ ), ρ = e2kx+2kN tN , N = 3, 5, 7 two solutions of the mKdV hierarchy.

The mixed Miura transformation yields

J1
+ = ∂2

xφ1 − (∂xφ1)2 = 0, J2
− = −∂2

xφ2 − (∂xφ2)2 (3.47)

Integrating to obtain J = ∂xw we find

w1 = 0, w2 = − 4k

1 + ρ
+ 2k (3.48)

Type-I Bäcklund transformation ∂x(w1 + w2) = β2

2 − 1
2 (w1 − w2)2 is satisfied by (3.48) for β = ±2k

• Scattering of two One-soliton Solutions

Consider the one-soliton of the mKdV hierarchy given by

φi = ln

(
1 +Riρ

1−Riρ

)
, i = 1, 2 ρ = e2kx+2kN tN , N = 3, 5, 7 · · · (3.49)

Miura transformation generates two one-soliton solutions of the KdV hierarchy, namely

J1
+ = ∂2

xφ1 − (∂xφ1)2; (3.50)

J2
− = −∂2

xφ2 − (∂xφ2)2; (3.51)

leading to

w1 = − 4k

1 +R1ρ
+ 2k, w2 = − 4k

1−R2ρ
+ 2k (3.52)

The Type-I Bäcklund transformation is satisfied for R1 = R2. Notice that although R1 = R2, J1 and
J2 correspond to different solutions due to opposite ε-sings in the Miura transformation.

3 Notice that there are typos in eqn. (45.11) of ref. [40]
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• One-Soliton into Two-Soliton Solution

Taking φ1 given by the one-soliton solution (3.49) and φ2 by

φ2 = ln

(
1 + δ(ρ1 − ρ2)− ρ1ρ2

1− δ(ρ1 − ρ2)− ρ1ρ2

)
, δ =

k1 + k2

k1 − k2
(3.53)

leading to

w2 = − 2(k2
1 − k2

2)(1 + ρ1)(1 + ρ2)

k1 − k2 − (k1 + k2)(ρ1 − ρ2)− (k1 − k2)ρ1ρ2
(3.54)

where ρi = e2kix+2kNi tN , i = 1, 2 satisfy the Type-I Bäcklund transformation for β = ±2k2.

All these verifications were made in the software Mathematica.

3.3 Fusing and Type-II Bäcklund Transformation

In this section we shall consider the composition of two gauge-Bäcklund transformations leading to the
Type-II Bäcklund transformation. Let us consider a situation in which we start with a Bäcklund relation
transforming solution v1 into another solution v0. A second subsequent Bäcklund relation transforms v0 into
v2. Such algebraic relation for the mKdV hierarchy is described by

KII(v1, v0, v2) = K(v2, v0)K(v0, v1) (3.55)

where K(vi, vj) is given in (3.15) with β = βij . It leads to

KII(v1, v0, v2) =

[
1 + β10β02

4λ eq e−φ0

2λ (β01e
−φ1 + β02e

−φ2)

− 1
2e
φ0(β01e

φ1 + β02e
φ2) 1 + β10β02

4λ e−q

]
(3.56)

where q = φ1 − φ2 and σ2 = − 4
β10β02

. Inserting the following identity

(β01e
φ1 + β02e

φ2)(β01e
−φ1 + β02e

−φ2) = β01β02(η + eq + e−q) (3.57)

where η =
β2

10+β2
02

β10β02
. Defining Λ = −φ0 − ln(β02e

−φ1 + β01e
−φ2)− ln σ

4 , eqn. (3.56) becomes

KII(v1, v0, v2) =

[
1− 1

σ2λe
q eΛ−p

2λσ (eq + e−q + η)
− 2
σ e

p−Λ 1− 1
λσ2 e

−q

]
. (3.58)

Eqn. (3.14) with KII(v1, v0, v2) leads to the following Bäcklund equations

∂xq = − 1

2σ
eΛ−p(eq + e−q + η)− 2

σ
ep−Λ (3.59)

∂xΛ =
1

2σ
eΛ−p(eq − e−q). (3.60)

Eqns. (3.59) and (3.60) coincide with the x-component of the Type-II Bäcklund transformation proposed for
the sine-gordon model in [18]. Considering now the time component of the 2-d gauge potential for t = t3 ,
(i.e., for the mKdV equation),

At3 = λEα + λ2E−α + vλh+
1

2
(∂xv − v2)Eα −

1

2
(∂xv + v2)λE−α

+
1

4
(∂2
xv − 2v3)h,

(3.61)

we find from eqn. (3.12),

16σ3∂t3q = eΛ−p (eq + e−q + η
) [

2σ2(∂2
xp+ ∂2

xq) + σ2 (∂xp+ ∂xq)
2 − 8eq

]
+

+ 4ep−Λ
[
−2σ2(∂2

xp+ ∂2
xq) + σ2 (∂xp+ ∂xq)

2 − 8e−q
]

+

+ 16σ∂xp
(
eq + e−q + η

)
(3.62)
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together with

4σ∂t3Λ = (v2
1 + ∂xv1)eΛ−q−p − (v2

2 + ∂xv2)eΛ+q−p, (3.63)

which is compatible with equations of motion for the mKdV model. These Type-II Bäcklund equations
(3.59)-(3.63) coincide with those derived in detail in ref. [20] where x→ x+, t→ x− and was extended to all
positive higher graded equation within the mKdV hierarchy 4. In the case of the KdV hierarchy

K̃typeII(J1, J0, J2) = K̃(J2, J0, β02)K̃(J0, J1, β01) (3.64)

where

K̃(Jj , Ji, βij) = −1

ζ

[
−ζ + 1

2Qij 1

−β
2
ij

4 + 1
4Q

2
ij ζ + 1

2Qij

]
.

Such transformation can be interpreted as an extended Bäcklund transformation dubbed Type-II Bäcklund
transformation (see [18]). Explicitly we find directly from (3.64)

[K̃II(J1, J0, J2)]11 = 1− 1

2ζ
Q− (β+ + β−)

2ζ2
+

Q

8ζ2
(Q+ P − 2Ω)

[K̃II(J1, J0, J2)]12 =
1

2ζ2
Q

[K̃II(J1, J0, J2)]22 = 1 +
1

2ζ
Q− (β+ − β−)

2ζ2
+

Q

8ζ2
(Q− P + 2Ω)

[K̃II(J1, J0, J2)]21 = − β+

4ζ2
Q+

β−
4ζ2

(P − 2Ω) +
Q

8ζ2
(−Ω2 + ΩP − P 2

4
+
Q2

4
)

− β−
ζ

+
Q

4ζ
(P − 2Ω) (3.65)

where Q = Q10 + Q02 = w1 − w2, P = Q10 − Q02 + 2Ω = w1 + w2, Ω = w0, 4β± = β2
01 ± β2

02 and
Qij = wi − wj .

Acting with K̃typeII(J1, J0, J2) in (3.22) we find the Bäcklund transformation for the KdV equation, i.e.,

∂xQ = 2β− −
1

2
PQ+ ΩQ,

∂x(2Ω + P ) = 2β+ −
1

4
P 2 − 1

4
Q2 − Ω2 + ΩP. (3.66)

Similarly for the time component gauge potential (A.2) we find

∂t3Q =
1

2
∂xP∂xQ+

1

2
∂xΩ∂xQ+

1

4
Q∂2

xΩ +
1

4
Ω∂2

xQ−
P

8
∂2
xQ−

Q

8
∂2
xP

∂t3(2Ω + P ) =
1

4
(∂xP )2 +

1

4
(∂xQ)2 +

1

2
∂xP∂xΩ + (∂xΩ)2 − P

8
∂2
xP −

Q

8
∂2
xQ

+
1

4
P∂2

xΩ +
1

4
Ω∂2

xP −
1

2
Ω∂2

xΩ.

(3.67)

Equations (3.66) and (3.67) are compatible and lead to the eqns. of motion (3.8).
Alternatively in terms of the mKdV Bäcklund transformation (3.23), eqn. (3.64) can be obtained by

gauge-Miura transformation, i.e.,

K̃TypeII(J1, J0, J2) = g2(v2, ε2)g1 (K(φ2, φ0)IK(φ0, φ1)) g−1
1 g2(v1, ε1)−1

where we may introduce the identity element, I = g−1
1 g2(v0, ε0)−1g2(v0, ε0)g1 depending upon an arbitrary

ε-sign, say, ε0. As argued when establishing (3.23), we are considering transitions with opposite ε-signs such
that ε1 = −ε0 = ε and ε0 = −ε2 = −ε. It therefore follows that

K̃TypeII(J1, J0, J2) = g2(v2, ε)g1 [K(φ2, φ0)K(φ0, φ1)] g−1
1 g2(v1, ε)

−1

= g2(v2, ε)g1K
II(φ2, φ1)g−1

1 g2(v1, ε)
−1 (3.68)

4 Observe that the Type-II Bäcklund transformation via gauge transformation was constructed in [19] where a solution
presented there was chosen to reproduce the Bäcklund transformation proposed in [18]. Here we choose a gauge transformation
solution of [19] that reproduces [28].
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The equation (3.68) yields[
K̃TypeII (J1, J0, J2)

]
11

= 1 +
(1 + ε)

4σζ
eΛ−p (eq + e−q + η

)
− (1− ε)

σζ
ep−Λ

− (1− ε)
2σ2ζ2

e−q − (1 + ε)

2σ2ζ2
eq − (1− ε)

σζ2
v1e

p−Λ

− (1 + ε)

4σζ2
v1e

Λ−p (eq + e−q + η
)
,[

K̃TypeII (J1, J0, J2)
]

12
=

(1− ε)
σζ2

ep−Λ − (1 + ε)

4σζ2
eΛ−p (eq + e−q + η

)
,

[
K̃TypeII (J1, J0, J2)

]
21

= − ε

σ2ζ

(
eq − e−q

)
− (1− ε)

σζ
(v1 + v2)ep−Λ

− (1 + ε)

4σζ
(v1 + v2) eΛ−p (eq + e−q + η

)
+

(v1 + v2)

2σ2ζ2

(
eq − e−q

)
− ε(v1 − v2)

2σ2ζ2

(
eq + e−q

)
+

(1 + ε)

4σζ2
v1v2e

Λ−p (eq + e−q + η
)
− (1− ε)

σζ2
v1v2e

p−Λ,[
K̃TypeII (J1, J0, J2)

]
22

= 1− (1 + ε)

4σζ
eΛ−p (eq + e−q + η

)
+

(1− ε)
σζ

ep−Λ

− (1 + ε)

2σ2ζ2
e−q − (1− ε)

2σ2ζ2
eq +

(1− ε)
σζ2

v2e
p−Λ

+
(1 + ε)

4σζ2
v2e

Λ−p (eq + e−q + η
)
. (3.69)

Comparing the matrix elements of (3.64) with (3.68) we find the following relations between the mKdV
and KdV variables:

• matrix element 11

ζ−1 : −1

2
Q =

(1 + ε)

4σ
eΛ−p (eq + e−q + η

)
− (1− ε)

σ
ep−Λ (3.70)

ζ−2 : − (β+ + β−)

2
+
Q

8
(Q+ P − 2Ω) = − (1− ε)

2σ2
e−q − (1 + ε)

2σ2ζ2
eq

− (1− ε)
σζ2

v1e
p−Λ − (1 + ε)

4σζ2
v1e

Λ−p (eq + e−q + η
)

(3.71)

• matrix element 21:

ζ−1 : −β− +
Q

4
(P − 2Ω) = − ε

σ2

(
eq − e−q

)
− (1− ε)

σ
(v1 + v2)ep−Λ

− (1 + ε)

4σζ
(v1 + v2) eΛ−p (eq + e−q + η

)
(3.72)

ζ−2 : −β+

4
Q+

β−
4

(P − 2Ω) +
Q

8
(−Ω2 + ΩP − P 2

4
+
Q2

4
) =

+
(v1 + v2)

2σ2

(
eq − e−q

)
− ε(v1 − v2)

2σ2

(
eq + e−q

)
+

(1 + ε)

4σ
v1v2e

Λ−p (eq + e−q + η
)
− (1− ε)

σ
v1v2e

p−Λ (3.73)

• matrix element 22:

ζ−2 : − (β+ − β−)

2
+
Q

8
(Q− P + 2Ω) = − (1 + ε)

2σ2
e−q − (1− ε)

2σ2
eq

+
(1− ε)
σ

v2e
p−Λ +

(1 + ε)

4σ
v2e

Λ−p (eq + e−q + η
)
. (3.74)
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The element 12 and the element 22 with ζ−1 gives us the same result of (3.70). Eliminating the mKdV
variables p, q and Λ we recover the Type-II Bäcklund transformation for the KdV hierarchy (3.66) as shown
in the Appendix B.

3.3.1 Examples and Solutions

• Vacuum - 1-soliton - Vacuum

The first example is to consider vacuum to 1-soliton and back to vacuum again given by the following
configuration,

w1 = 0, w0 = Ω = − 4k

1 + ρ(x, tN )
+ 2k, w2 = 0 (3.75)

with ρ(x, tN ) = e2kx+2kN tN . It is straightforward to check that eqns. (3.66) and (3.67) are satisfied for
β− = 0 and β+ = 2k2.

• 1-soliton - 2soliton - 1-soliton

Consider now a configuration of 1-soliton transforming into a 2-solitons solution and back to 1-soliton.
It is described by

wi = − 4ki
1 + ρi(x, tN )

+ 2ki, i = 1, 2 ρi = e2kix+2kNi tN , (3.76)

Ω = w0 = − 2(k2
1 − k2

2)(1 + ρ1)(1 + ρ2)

k1 − k2 − (k1 + k2)(ρ1 − ρ2)− (k1 − k2)ρ1ρ2
(3.77)

Eqns. (3.66) and (3.67) are satisfied for β− = k2
2 − k2

1 and β+ = k2
1 + k2

2.

• Vacuum - 1-soliton - 2-soliton

Consider the solution of eqn. (3.66) and (3.67)

w1 = 0, w0 = Ω = − 4k1

1 + ρ1(x, tN )
+ 2k1, (3.78)

and

w2 = − 2(k2
1 − k2

2)(1 + ρ1)(1 + ρ2)

k1 − k2 − (k1 + k2)(ρ1 − ρ2)− (k1 − k2)ρ1ρ2
, (3.79)

where ρi = e2kix+2kNi tN Eqns. (3.66) and (3.67) are satisfied for β− = k2
1 − k2

2 and β+ = k2
1 + k2

2.



Chapter 4

Super mKdV hierarchy and its
Bäcklund transformations

This chapter is divided in two sections. The section 4.1 is dedicated to a review of the construction of the
super mKdV hierarchy. In section 4.2 we obtain the Bäcklund transformations for the super mKdV hierarchy
as a generalization of the discussion presented in the previous chapters. The explicit examples of N = 3 and
N = 5 are computed.

4.1 The supersymmetric mKdV hierarchy

In this section we present a brief review of the systematic construction of the supersymmetric mKdV hierarchy
based on the affine Kac-Moody superalgebra Ĝ = ŝl(2,1) [35]. The structure explained in the first chapter
of the thesis and used in the second one will be again crucial here (with some adaptations to include the
supersymmetric generators).

Let us start by considering the super Lie algebra sl(2,1), which has four bosonic generators
{
h1, h2, E±α1

}
,

and four fermionic generators
{
E±α2

, E±(α1+α2)

}
, where α1 is bosonic simple root and α2, α1 + α2 are

fermionic simple roots. The affine ŝl(2,1) structure is introduced by extending each generator Ta ∈ sl(2, 1)

to T
(n)
a , where d is defined by

[
d, T

(n)
a

]
= nT

(n)
a . The hierarchy is further specified by introducing a decom-

position of the ŝl(2,1) superalgebra through the definition of a constant grade one element E(1), where

E(2n+1) = h
(n+1/2)
1 + 2h

(n+1/2)
2 − E(n)

α1
− E(n+1)

−α1
, (4.1)

and the so called principal grading operator

Qp = 2d+
1

2
h

(0)
1 . (4.2)

The grading operator Qp and the constant element E(1) decompose the affine superalgebra Ĝ = ⊕ Ĝm =

K⊕M, where m is the degree of the subspace Ĝm according to Qp, K =
{
x ∈ Ĝ /[x,E(1)] = 0

}
is the kernel

of E(1), and M its complement, in the following way

Ĝ2n+1 =
{
K

(2n+1)
1 , K

(2n+1)
2 , M

(2n+1)
1

}
,

Ĝ2n =
{
M

(2n)
2

}
,

Ĝ2n+ 1
2

=
{
F

(2n+ 1
2 )

2 , G
(2n+ 1

2 )
1

}
,

Ĝ2n+ 3
2

=
{
F

(2n+ 3
2 )

1 , G
(2n+ 3

2 )
2

}
, (4.3)

where the generators Fi, Gi,Ki, and Mi are defined as linear combinations of the ŝl(2,1) generators [35]. The
representation of these generators is given in Appendix D.

Now the construction of the integrable hierarchy is based on the zero curvature condition (2.2). In general,
Ax is defined as Ax = E(1) +A0 +A1/2 where A0 +A1/2 ∈M, i.e.,

A0 = uM
(0)
2 , A1/2 =

√
iψ̄ G

(1/2)
1 . (4.4)

35
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Here, u and ψ̄ are the corresponding fields of the integrable hierarchy. Now, we will assume that AtN =
D(N) +D(N−1/2) + ...+D(1/2) +D(0) for the positive hierarchy, where D(m) has grade m. Then, the equation
to be solved reads[

∂x + E(1) +A0 +A1/2, ∂tN +D(N) +D(N−1/2) + ...+D(1/2) +D(0)
]

= 0. (4.5)

The solving method consists on splitting the above equation grade by grade, which leads us to the following
set of relations,

(N + 1) :
[
E(1), D(N)

]
= 0,

(N + 1/2) :
[
E(1), D(N−1/2)

]
+
[
A1/2, D

(N)
]

= 0,

(N) : ∂xD
N +

[
A0, D

(N)
]

+
[
E(1), D(N−1)

]
+
[
A1/2, D

(N−1/2)
]

= 0,

...

(1) : ∂xD
(1) +

[
A0, D

(1)
]

+
[
E(1), D(0)

]
+
[
A1/2, D

(1/2)
]

= 0,

(1/2) : ∂xD
(1/2) +

[
A0, D

(1/2)
]

+
[
A1/2, D

(0)
]
− ∂tNA1/2 = 0,

(0) : ∂xD
(0) +

[
A0, D

(0)
]
− ∂tNA0 = 0. (4.6)

Note that, the image part of the zero and the one-half grade components of (4.6) yields the time evolution
for the fields introduced in eq. (4.4). Now, it is possible to expand each term D(m) by using the generators
in eq. (4.3), as follows

D(2n+1) = ã2n+1K
(2n+1)
1 + b̃2n+1K

(2n+1)
2 + c̃2n+1M

(2n+1)
1 ,

D(2n) = ã2nM
(2n)
2 ,

D(2n+ 1
2 ) = ã2n+ 1

2
F

(2n+ 1
2 )

2 + b̃2n+ 1
2
G

(2n+ 1
2 )

1 ,

D(2n+ 3
2 ) = ã2n+ 3

2
F

(2n+ 3
2 )

1 + b̃2n+ 3
2
G

(2n+ 3
2 )

2 , (4.7)

where the ãm, b̃m, and c̃m are functionals of the fields u and ψ̄. Substituting this parametrization in eq. (4.6),
one can solve recursively for all D(m),m = 0, · · ·N . Notice that the Lax component Ax does not depend
on the index N and will be the same for the entire hierarchy. It takes the following form (see for instance
[26, 34])

Ax =


λ1/2 − ∂xφ −1

√
i ψ̄

−λ λ1/2 + ∂xφ
√
i λ1/2 ψ̄

√
i λ1/2 ψ̄

√
i ψ̄ 2λ1/2

 , (4.8)

where we have redefined u = −∂xφ. This parametrization establishes the explicit relationship between the
relativistic (sinh-Gordon) and non-relativistic (mKdV) field variables.

In what follows we will apply the procedure and consider explicit solutions of the integrable hierarchy
equations (4.6) for the simplest members. For the N = 3 member, we find that the solution for the Lax
component At3 = D(3) +D(5/2) +D(2) +D(3/2) +D(1) +D(1/2) +D(0), is given by

At3 =


a0 + λ1/2a1/2 − λ∂xφ+ λ3/2 a+ − λ µ+ + λ1/2ν+ + λ

√
iψ̄

−λa− − λ2 −a0 + λ1/2a1/2 + λ∂xφ+ λ3/2 λ1/2µ− + λν− + λ3/2
√
iψ̄

λ1/2µ− − λν− + λ3/2
√
iψ̄ µ+ − λ1/2ν+ + λ

√
iψ̄ 2λ1/2a1/2 + 2λ3/2


,

(4.9)
where

a0 = −1

4

(
∂3
xφ− 2(∂xφ)3 + 3i∂xφψ̄∂xψ̄

)
, a1/2 = − i

2
ψ̄∂xψ̄, a± =

1

2

(
∂2
xφ± (∂xφ)2 ∓ iψ̄∂xψ̄

)
,

µ± =

√
i

4

(
∂2
xψ̄ ± ∂xφ∂xψ̄ ∓ ψ̄∂2

xφ− 2ψ̄(∂xφ)2
)
, ν± =

√
i

2

(
∂xψ̄ ± ψ̄∂xφ

)
. (4.10)
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The equations of motion, which correspond to the zero and one-half grade components of (4.6), are in this
case the N = 1 supersymmetric mKdV equations, namely

4∂t3u = ∂3
xu− 6u2∂xu+ 3iψ̄∂x

(
u∂xψ̄

)
, (4.11)

4∂t3 ψ̄ = ∂3
xψ̄ − 3u∂x

(
uψ̄
)
. (4.12)

Now, for the N = 5 member, the solution for the Lax component At5 = D(5) + D(9/2) + · · · + D(0) is given
explicitly in appendix E. In this case, we find the following equations of motion,

16∂t5u = ∂5
xu− 10(∂xu)3 − 40u(∂xu)(∂2

xu)− 10u2(∂3
xu) + 30u4(∂xu) + 5i∂xψ̄∂x(u∂2

xψ̄)

+ 5iψ̄∂x(u∂3
xψ̄ − 4u3∂xψ̄ + ∂xu∂

2
xψ̄ + ∂2

xu∂xψ̄), (4.13)

16∂t5 ψ̄ = ∂5
xψ̄ − 5u∂x(u∂2

xψ̄ + 2∂xu∂xψ̄ + ∂2
xuψ̄) + 10u2∂x(u2ψ̄)− 10(∂xu)∂x(∂xuψ̄). (4.14)

It is worth pointing out that the negative integrable hierarchy can be also constructed by considering the
following zero curvature condition,[

∂x + E(1) +A0 +A1/2, ∂t−M +D(−M) +D(−M+1/2) + · · ·+D(−1) +D(−1/2)
]

= 0. (4.15)

The solutions are in general non-local, however, for the simplest case of N = −M = −1, we find that the
Lax component At−1

= D(−1) +D(−1/2), corresponds to the N = 1 sshG equation [27, 35], i.e

At−1
=


λ−1/2 −λ−1 e2φ −λ1/2

√
i ψeφ

−e−2φ λ−1/2 −
√
i ψe−φ

√
i ψe−φ λ1/2

√
i ψeφ 2λ−1/2

 . (4.16)

In this case, the fields φ, ψ̄ and ψ satisfy

∂t−1
∂xφ = 2 sinh 2φ+ 2ψ̄ψ sinhφ,

∂t−1
ψ̄ = 2ψ coshφ, (4.17)

∂xψ = 2ψ̄ coshφ,

the equations of motion of the N = 1 sshG model in the light-cone coordinates (x, t−1). We note that
the equations of motion for all members of the hierarchy are invariant under the following supersymmetric
transformations,

δφ =
√
iε̄ ψ̄, δψ̄ =

1√
i
ε̄ ∂xφ, (4.18)

where ε̄ is a Grassmannian parameter.

4.2 Super-Bäcklund transformations

In this section we derive a general method to generate the super-Bäcklund transformations (sBT) for all
members of the hierarchy. We will use the defect matrix associated to the hierarchy in order to derive the
sBT in components. The key ingredient is the gauge invariance of the zero curvature representation generated
by the defect matrix which, in turn is again assumed to relate two field configurations.

As explicit examples we construct the super-Bäcklund transformation for the first two flows, namely,
N = 3 (smKdV) equation, and for the N = 5 super-equation. One nice check will be to put the fermioninc
fields to zero and recover the “classical” Bäcklund transformations.

Based upon the fact that the spatial Lax operator is common to all members of the mKdV hierarchy, it
has been shown recently in the previous chapters that the spatial component of the Bäcklund transformation,
and consequently the associated defect matrix, are also common and henceforth universal within the entire
hierarchy. Here, we will extend these results to the supersymmetric mKdV hierarchy starting from the defect
matrix already derived for the (N = −1 member), the super sinh-Gordon equation. The so-called type-I
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defect matrix can be written as follows [26],

K =


λ1/2 − 2

ω2 e
φ+λ−1/2 − 2

√
i

ω e
φ+
2 f1

− 2
ω2 e
−φ+λ1/2 λ1/2 − 2

√
i

ω e−
φ+
2 f1λ

1/2

2
√
i

ω e−
φ+
2 f1λ

1/2 2
√
i

ω e
φ+
2 f1

2
ω2 + λ1/2

 (4.19)

where φ± = φ1±φ2, ω represents the Bäcklund parameter, and f1 is an auxiliary fermionic field. The defect
matrix K, connecting two different configurations φ1 and φ2, satisfies the following gauge equation,

∂xK = KAx(φ1, ψ̄1)−Ax(φ2, ψ̄2)K. (4.20)

Now, by substituting (4.8) and (4.19) in the (4.20), we get

∂xφ− =
4

ω2
sinh(φ+)− 2i

ω
sinh(

φ+

2
)f1ψ̄+, (4.21)

ψ̄− =
4

ω
cosh

(
φ+

2

)
f1, (4.22)

∂xf1 =
1

ω
cosh(

φ+

2
)ψ̄+. (4.23)

the spatial part of the Bäcklund transformations, where we have denoted ψ̄± = ψ̄1 ± ψ̄2. To derive the time
component of the transformation, we consider the corresponding temporal part of the Lax pair Atn .

4.2.1 N=3

For the smKdV equation (N = 3), the second gauge condition reads,

∂t3K = KAt3(φ1, ψ̄1)−At3(φ2, ψ̄2)K. (4.24)

By substituting (4.9) and (4.19) in the above equation, we obtain

4∂t3φ− =
i

ω

[
∂2
xφ+ cosh

(
φ+

2

)
− (∂xφ+)

2
sinh

(φ+

2

)]
ψ̄+f1

− i

ω

[
∂xφ+ cosh

(φ+

2

)
∂xψ̄+ − 2 sinh

(φ+

2

)
∂2
xψ̄+

]
f1

+
2

ω2

[
2(∂2

xφ+) coshφ+ − (∂xφ+)
2

sinhφ+ + iψ̄+(∂xψ̄+) sinhφ+

]
− 96i

ω5

[
sinh

(φ+

2

)
+ 4 sinh3

(φ+

2

)
+ 3 sinh5

(φ+

2

)]
ψ̄+f1

− 32

ω6
sinh3 φ+, (4.25)

and

4∂t3f1 =
1

2ω
cosh

(φ+

2

) [
2∂2
xψ̄+ − ψ̄+(∂xφ+)2

]
+

1

2ω
sinh

(φ+

2

) [
ψ̄+∂

2
xφ+ − (∂xφ+)(∂xψ̄+)

]
− 12

ω4
sinhφ+ cosh2

(φ+

2

)
(∂xφ+)f1 +

12

ω5
sinh2 φ+ cosh

(φ+

2

)
ψ̄+. (4.26)

Equations (4.21)–(4.23), and (4.25) and (4.26) correspond to the super-Bäcklund transformations for the
smKdV in components. It can easily verified that they are consistent by cross-differentiating any of them.

Limit to bosonic case

Notice also that by setting all the fermions to zero we recover the bosonic case, i.e., the Bäcklund transfor-
mation of the mKdV [28],

∂xφ− =
4

ω2
sinhφ+, (4.27)

4∂t3φ− =
4

ω2
∂2
xφ+ coshφ+ −

2

ω2
(∂xφ+)

2
sinhφ+ −

32

ω6
sinh3 φ+. (4.28)
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4.2.2 N=5

Now, to derive the temporal part of the super-Bäcklund transformation for the N = 5 member of the hierarchy
we consider the corresponding Lax operator At5 . The gauge condition reads,

∂t5K = KAt5(φ1, ψ̄1)−At5(φ2, ψ̄2)K. (4.29)

By solving this condition for At5 given in Appendix E, we obtain

16∂t5φ− = − i
ω

[
c0 ψ̄+ + c1 ∂xψ̄+ + c2 ∂

2
xψ̄+ + c3 ∂

3
xψ̄+ + c4 ∂

4
xψ̄+

]
f1

+
1

ω2

[
c5 + ic6 ψ̄+∂xψ̄+ + ic7 ψ̄+∂

2
xψ̄+ + ic8

(
ψ̄+∂

3
xψ̄+ − (∂xψ̄+)(∂2

xψ̄+)
)]

− i

ω5

[
c9 ψ̄+ + c10 ∂xψ̄+ + c11 ∂

2
xψ̄+

]
f1 +

1

ω6

[
c12 + i c13 ψ̄+∂xψ̄+

]
+
i

ω9
c14f1ψ̄+ +

c15

ω10
, (4.30)

16∂t5f1 =
1

ω

[
d0 ψ̄+ + d1 ∂xψ̄+ + d2 ∂

2
xψ̄+ + d3 ∂

3
xψ̄+ + d4 ∂

4
xψ̄+

]
+

1

ω4

[
d6 + i d5 ψ̄+∂xψ̄+

]
f1 +

1

ω5

[
d7 ψ̄+ + d8 ∂xψ̄+ + d9 ∂

2
xψ̄+

]
+
d10

ω8
f1 +

d11

ω9
ψ̄+, (4.31)

where ci, i = 0, .., 15 and dj , j = 0, .., 11 are functions depending on φ+ and its derivatives, and their explicit
forms are given by (F.1)-(F.16) and (F.17)-(F.28) from Appendix F, respectively. The equations (4.21)–(4.23),
and (4.30) and (4.31) correspond to the super-Bäcklund transformations for the N = 5 super equation. Cross
differentiating (4.30) and (4.31) with respect of x we recover the equations of motion (4.13) and (4.14) after
using eqns. (4.21)–(4.23).

In this chapter we reviewed the construction of the super mKdV hierarchy using the graded super algebra
ŝl(2, 1) and the principal gradation. We then used the universality of the K-matrix construction along
the hierarchy to explicitly construct the Bäcklund transformations for the super N = 3 and super N = 5
equations.

Although we are presenting it here,we also computed the Bäcklund transformations for those equations
using the super fields formalism. The super charges were also computed, giving particular attention to the
changes on the conserved charges due to the introduction of the defect [31, 33].
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Chapter 5

Conclusions and further developments

In the Part I of the thesis we explored the algebraic structure underlying integrable hierarchies in order to
find universal features of their equations. The gauge invariance of the zero curvature equation allowed the
construction of a defect-gauge matrix connecting two different field configurations of the same integrable
model and hence generating its Bäcklund transformations. In Chapter 2 the main result is the fact that the
construction of the defect matrix depends only on the Ax and therefore is universal within the hierarchy. This
means that one can systematically construct the Bäcklund transformations for any equation in the mKdV
hierarchy [20], [28].

The main result of the Chapter 3 is the extension of such construction to the KdV hierarchy by proposing
a Miura-gauge transformation denoted by the product g2g1 given in (3.1) and (3.3) mapping the mKdV into
the KdV hierarchy (see (3.4)) [29]. A subtle point is that such Miura mapping allows a sign ambiguity such
that each solution of the mKdV hierarchy defines two solutions for its KdV counterpart. The Bäcklund-gauge
transformation for the KdV hierarchy is constructed by Miura-gauge transforming the Bäcklund transforma-
tion of the mKdV system as shown in (3.23). An interesting fact is that the Bäcklund transformation for
the KdV hierarchy is solved by mixed Miura solutions generated by the mKdV Bäcklund solutions. A few
simple explicit examples illustrate our conjecture. A more general evidence of the mixed Miura solutions is
shown to agree with the Bäcklund transformation proposed in [11] for the first two KdV flows.

The composition law of two subsequent Bäcklund-gauge transformations leading to Type-II Bäcklund
transformation (see (3.55)) introduced in [18] in the context of sine-Gordon and Tzitzeica models was extended
to the KdV hierarchy. We have showed that the ideia of fusing to defects in the Lagrangian formalism can
be translated within our construction, to the direct fusion of two KdV Bäcklund-gauge transformations in
(3.64) and alternatively, the Miura transformation of mKdV Type-II Bäcklund transformation as shown in
(3.68). These two approaches generate relations between the mKdV and KdV variables which were shown
in the Appendix B, to be consistent. In [30] we discuss the generalization of this idea for n defects for the
Sinh-Gordon equation.

Another interesting point is that we explored only the positive part of the mKdV hierarchy, by using it
to construct the positive part of KdV hierarchy and corresponding Bäcklund transformations. It would be
very interesting to understand which kind of result it would be obtained for the negative part of the KdV
hierarchy by starting with the negative part of the mKdV hierarchy, both in a the sense of hierarchy itself as
well as for its Bäcklund transformations.

In the Chapter 4 we have studied the presence of a Type-I integrable defects in the ŝl(2, 1) supersymmetric
integrable hierarchy through super Bäcklund transformations. What we computed in principle would be called
Type-I defect in the literature. However, let us call the attention to an important property appearing in the
corresponding supersymmetric extensions. It turns to be that what we are calling type-I integrable defect for
the supersymmetric mKdV hierarchy contains intrinsically an auxiliary fermionic field necessary to describe
defect conditions for the fermionic fields. In that sense, this kind of defect should be treated as a “partial”
Type-II defect, i.e. there is only one auxiliary fermionic time dependent quantity defined on the defect, but
not a bosonic auxiliary field. A genuine Type-II defect will then contain one bosonic and two fermionic
auxiliary fields as it is the case of the super sinh-Gordon model. Then, by using the universality argument,
the type-II super Bäcklund transformation for the smKdV can be obtained either directly from the type-II
defect matrix for the super sinh-Gordon previously obtained in [27], or by applying the fusing procedure
of two partial type I defect matrices. We discuss this in [31]. The latter procedure can be achieved by
performing two type-I Bäcklund transformations frozen at different points and then taking the limit when
both points coincide. The auxiliary fields will then appear after an appropriate reparameterization of the
“squeezed” fields valued only at the defect point. We expect that solutions for the auxiliary fields will be
same as those for the super Sinh-Gordon equation due to the universality of the spatial component of the
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Lax within the hierarchy, as it is in the bosonic case [20, 28]. We expect to return to these issues in future
investigations.

One natural continuation for this work would be to construct the super KdV hierarchy and its K-matrix
through gauge transformations starting with the super mKdV hierarchy as a generalization for what we did
in the bosonic case.

An interesting result we did not discuss here but it is worth to mention is that in [32] we also showed the
construction of the super integrable hierarchy and of the Bäcklund transformations by recursion relations as
a generalization of [36].

Finally we should mention that the idea of an universality of the Bäcklund-gauge transformation is most
probably valid for other hierarchies such as the AKNS and higher rank Toda theories. It would be interesting
to see how such examples can be worked out technically.

Also, for an ŝl(3) for example we could construct a Toda hierarchy if we assume the principal gradation.
A good question is if there exist something analog to the Miura-gauge transformations which would lead to
the correspondent hierarchy for the homogeneous gradation.

One extra question would be how to translate the discussion present in this Part I to the classical r-matrix
formalism.

It should be interesting to develop the concept of integrable hierarchies for discrete cases and investigate
whether the arguments involving Bäcklund-gauge transformation employed in this thesis can be extended.
The relation between the integrable discrete mKdV [37],[38] and its Miura transformation to discrete KdV
equations should be understood under the algebraic formalism.
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Chapter 6

Introduction

The Part II of this thesis is focused in quantum integrable spin chains. More specifically we are interested in
compute the spectrum of a certain class of finite length spin chains and explain the high degeneracies present
in their spectra.

Quantum spin chains have many interesting applications in several different areas of physics including
but not restricted to condensed matter [41], statistical mechanics [42, 43] and AdS/CFT [44] with possible
applications in black-holes [45]. Recently, relations between integrable spin chains and a four dimensional
Chern-Simons theory were also found [46]-[48].

To have good ways to compute the spectra of such systems is therefore very important. However, this is
not usually easy since they are interacting systems with many particles.

For those quantum spin chains which are integrable, several techniques have been developed, such as
quantum inverse scattering method (QISM), algebraic Bethe ansatz, analytical Bethe ansatz, nested algebraic
Bethe ansatz, separation of variables, etc [49]-[53].

In the context of open integrable quantum spin chains the most important objects are the R-matrix and
the K-matrices. The R-matrix encodes the bulk information and satisfies the so-called Yang-Baxter equation
(YBE)[50, 51]. The K-matrices, KL and KR, on the other hand contain the information about the left and
right boundaries, respectively. The K-matrices satisfy an equation called Boundary Yang-Baxter equation
(BYBE) or reflection equation [52, 53]. By having R, KL and KR we are able to construct the so-called
transfer matrix which is the generating function of an infinite number of conserved quantities. For a review
see [54, 55].

Three important types of R-matrices are: rational, trigonometric and elliptic. Spin chains constructed
from rational R-matrices have classical (Lie group) symmetries which are in fact, the same symmetries of
the R-matrix. This is not the case for trigonometric and elliptic R-matrices, whose transfer matrices do not
have the same symmetries of the R-matrices. Several explicit R-matrices were computed by [56]-[58]. For
each R-matrix the BYBE has to be solved in order to find the corresponding K-matrices. Several solutions
for the reflection equation were find by [59]-[62].

In this work we focus on anisotropic spin chains. They are constructed from trigonometric R-matrices,
which are themselves associated to affine Lie algebras. Some of these spin chains have quantum group (QG)
symmetries that help to explain the degeneracies and multiplicities of their spectrum. The first example to
be solved was the XXZ integrable spin chain which was proved to have QG symmetry Uq(sl(2)) [63, 64].
Since then many other examples with higher ranks have been investigated, see e.g. [65]-[87].

In this work we construct finite length integrable quantum spin chains using the R-matrices for the affine

Lie algebras algebras ĝ = {A(2)
2n , A

(2)
2n−1, B

(1)
n , C

(1)
n , D

(1)
n } [56]-[58]. Since we want to describe the spin chains

which have more symmetry we use diagonal K-matrices [59]-[62]. Those K-matrices depend on a discrete
parameter p which runs from 0 to n. As we prove [88] in chapter 7 those spin chains have quantum group
symmetry corresponding to removing the pth node from the Dynkin diagram of ĝ.

In the work of Nepomechie and Mezincescu [67] for R-matrices associated with A
(1)
1 and A

(2)
2 they noticed

that the asymptotic monodromy matrix could be expressed in terms of only the coproducts of the generators.
This is not immediately true for the ĝ models above. A fundamental step is to do a gauge transformation on
the R-matrix and K-matrices in such a way that they still satisfy YBE and BYBE but the new asymptotic
monodromy would depend only on the unbroken generators, i.e. the ones corresponding to the nodes on lhs
and rhs of the pth node.

In the Table 6.1 are summarized the QG symmetries each spin chain has.

It is important to notice that some cases were already well understood. Our main contribution is for the
cases where 0 < p < n which from our knowledge are new. The cases for p = 0 were know already from a long
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ĝ QG symmetry Representation at each site

A
(2)
2n Uq(Bn−p)⊗ Uq(Cp) (2(n− p) + 1, 1)⊕ (1, 2p)

A
(2)
2n−1 Uq(Cn−p)⊗ Uq(Dp) (p 6= 1) (2(n− p), 1)⊕ (1, 2p)

B
(1)
n Uq(Bn−p)⊗ Uq(Dp) (n > 1, p 6= 1) (2(n− p) + 1, 1)⊕ (1, 2p)

C
(1)
n Uq(Cn−p)⊗ Uq(Cp) (2(n− p), 1)⊕ (1, 2p)

D
(1)
n Uq(Dn−p)⊗ Uq(Dp) (n > 1, p 6= 1, n− 1) (2(n− p), 1)⊕ (1, 2p)

Table 6.1: QG symmetries of the open-chain transfer matrix, where p = 0, 1, . . . , n.

time [65]-[69]. The case of p = n and ĝ = A
(2)
2n was computed more recently in [78, 86] while for ĝ = A

(2)
2n−1

was computed by us in [87].

In addition to the symmetries described in Table 6.1, the cases C
(1)
n and D

(1)
n have also a duality symmetry

p→ n−p. Such symmetry is a consequence of the Dynkin diagram be invariant under reflection. When p = n
2

we also have a self-duality symmetry. In addition to that, when p = n
2 and the parameter of the K-matrix

γ0 = −1 we also have what we called bonus symmetry. The bonus symmetry makes representations as 2(a, a)
degenerate to 2a2.

The cases for A
(2)
2n−1, B

(1)
n and D(1) have also Z2 symmetries transforming complex representations into

their conjugates.
The duality symmetry, self-duality symmetries, bonus symmetry and the Z2 symmetries are all explicitly

constructed in the Chapter 7 and are used to explain the degeneracies and multiplicities of the spectrum.

Recently the case of D
(2)
n+1 was also studied [89] and showed to have QG symmetry Uq(Bn−p)⊗ Uq(Bp),

duality p→ n− p, self duality and bonus symmetry in the same situations as the ones described above.
The process of directly diagonalize the transfer matrix can be computationally very difficult. The di-

mension of the matrices increases very fast with the number of sites in such a way that this process quickly
becomes impossible to continue. An alternative is to use the method of analytical Bethe ansatz to obtain
the eigenvalues. Again the cases for p = 0 were already been considered several years ago [68, 69, 84, 85, 87].
And some of the cases for p = n [84, 86, 87].

When talking about Bethe ansatz, on Chapter 8, in addition to the cases described in Table 6.1, we also

consider D
(2)
n+1 . For closed spin chains there is a general formula by Reshetikhin for Bethe ansatz for all

algebras. In this work we conjecture a generalization of such formula for open spin chains. We also construct
formulas for the Dynkin labels of the Bethe states in terms of the number of Bethe roots of each type.

In chapter 7 we prove that the spin chains have the QG symmetries presented in Table 6.1, the dualities
and Z2 are explicitly constructed and proved. In the process to prove these symmetries several interesting
properties for the R-matrices were found and proved. Several examples are given in order to illustrate the
symmetries. In Chapter 8 we compute the Bethe ansatz and give explicit formulas for all the algebras
mentioned, as well as a conjecture for a general formula. The relation between Dynkin labels of the Bethe
states and the number of Bethe roots of each type is also presented. A more detailed outline of each chapter
is presented at the beginning of them.



Chapter 7

Surveying the quantum group
symmetries of integrable open spin
chains

The outline of this chapter is as follows. The transfer matrix is introduced in Sec. 7.1. The QG symmetry

of the transfer matrix is proved in Sec. 7.2. The duality symmetry of the transfer matrix (for the cases C
(1)
n

and D
(1)
n ), and the action of duality on the QG generators, are worked out in Sec. 7.3. The additional Z2

symmetries of the transfer matrix (for the cases A
(2)
2n−1, B

(1)
n and D

(1)
n ), and the action of these symmetries

on the QG generators, are worked out in Sec. 7.4. These symmetries are used in Sec. 7.5 to explain the
degeneracies in the spectrum of the transfer matrix for generic values of the anisotropy parameter η. The
R-matrices are recalled in Appendix G, details about the QG generators are presented in Appendix H, and
the Hamiltonian is noted in Appendix I. Proofs of several lemmas are outlined in Appendix J.

7.1 Basics

We consider an integrable open quantum spin chain with a vector space V = Cd at each of its N sites, where

d =

{
2n+ 1 for A

(2)
2n , B

(1)
n

2n for A
(2)
2n−1 , C

(1)
n , D

(1)
n

, n = 1, 2, . . . . (7.1)

The Hilbert space (“quantum” space) of the spin chain is therefore V⊗N .

7.1.1 R-matrix

The bulk interactions of the spin chain are encoded in the R-matrix R(u), which maps V ⊗ V to itself, and
satisfies the Yang-Baxter equation (YBE) on V ⊗ V ⊗ V

R12(u− v)R13(u)R23(v) = R23(v)R13(u)R12(u− v) . (7.2)

We use the standard notations R12 = R ⊗ I , R23 = I ⊗ R ,R13 = P23R12P23 = P12R23P12, where I is the
identity matrix on V, and P is the permutation matrix on V ⊗ V

P =

d∑
i,j=1

eij ⊗ eji , (7.3)

where eij are the d× d elementary matrices with elements (eij)αβ = δi,αδj,β .

We consider here the anisotropic R-matrices (with anisotropy parameter η) corresponding to the following
affine Lie algebras 1

ĝ = {A(2)
2n , A

(2)
2n−1 , B

(1)
n , C(1)

n , D(1)
n } . (7.4)

1We do not consider here the case A
(1)
n , which does not have crossing symmetry; it has been studied in a similar context in

[71, 72, 77].
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These R-matrices, which are given by Jimbo [56] (except for A
(2)
2n−1, in which case we consider instead

Kuniba’s R-matrix [58]), are in the homogeneous picture (gauge).2 These R-matrices, which can be found in
Appendix G, all have the following additional properties: PT symmetry

R21(u) ≡ P12R12(u)P12 = Rt1t212 (u) , (7.5)

unitarity
R12(u) R21(−u) = ζ(u) I⊗ I , (7.6)

where ζ(u) is given by

ζ(u) = ξ(u) ξ(−u) , ξ(u) = −2 δ1 sinh(
1

2
(u+ 4η)) sinh(

1

2
(u+ ρ)) , (7.7)

where δ1 is given by

δ1 =

{
i for A

(2)
2n , A

(2)
2n−1

1 for B
(1)
n , C

(1)
n , D

(1)
n ,

(7.8)

and crossing symmetry
R12(u) = V1R

t2
12(−u− ρ)V1 = V t22 Rt112(−u− ρ)V t22 , (7.9)

where the crossing parameter ρ is given by

ρ =

{
−2κη − iπ for A

(2)
2n , A

(2)
2n−1

−2κη for B
(1)
n , C

(1)
n , D

(1)
n

, (7.10)

with κ defined in (G.4). The crossing matrix V is an antidiagonal matrix given by

V = δ2

d∑
α=1

εαe
(ᾱ−ᾱ′)ηeαα′ , V 2 = I , (7.11)

where δ2 is given by

δ2 =

{
1 for A

(2)
2n , B

(1)
n , D

(1)
n

i for A
(2)
2n−1 , C

(1)
n

,

and the other notations are defined in (G.5)-(G.7). The corresponding matrix M is defined by

M = V t V , (7.12)

and it is given by the diagonal matrix

M = δ2
2

d∑
α=1

e4( d+1
2 −ᾱ)ηeαα . (7.13)

7.1.2 K-matrices

The boundary interactions are encoded in the right and left K-matrices, denoted here by KR(u) and KL(u),
respectively, which map V to itself.3 We choose KR(u) to be the diagonal d× d matrix

KR(u) = KR(u, p) = diag
(
e−u , . . . , e−u︸ ︷︷ ︸

p

,
γeu + 1

γ + eu
, . . . ,

γeu + 1

γ + eu︸ ︷︷ ︸
d−2p

, eu , . . . , eu︸ ︷︷ ︸
p

)
, (7.14)

where p = 0, 1, . . . , n, and

γ =


γ0e

(4p−2)η+ 1
2ρ for A

(2)
2n−1 , B

(1)
n , D

(1)
n

γ0e
(4p+2)η+ 1

2ρ for A
(2)
2n , C

(1)
n

, γ0 = ±1 , (7.15)

2Bazhanov’s R-matrices [57] are equivalent, but are instead in the principal picture.
3Following Sklyanin [52], the right and left K-matrices are usually denoted instead by K−(u) and K+(u), respectively.

However, we adopt a different notation here in order to avoid confusion with the ± used in subsequent sections to denote the
limits u→ ±∞.
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where ρ is the crossing parameter (7.10). Unless otherwise noted, all the results in this chapter hold for both
values (±1) of the parameter γ0. As observed in [62] (see also [59, 60, 61]), the matrices (7.14) are solutions
of the boundary Yang-Baxter equation (BYBE) on V ⊗ V [52, 92, 93]

R12(u− v)KR
1 (u) R21(u+ v)KR

2 (v) = KR
2 (v)R12(u+ v)KR

1 (u)R21(u− v) . (7.16)

For p = 0, we see that KR(u, p) in (7.14) is proportional to the identity matrix,

KR(u, 0) ∝ I , (7.17)

which is the solution noted in [65]. We emphasize that the solution (7.14) depends on the bulk anisotropy
parameter η and the discrete boundary parameters p and γ0, but does not have any continuous boundary
parameters.

For the left K-matrix, we take

KL(u) = KL(u, p) = KR(−u− ρ, p)M , (7.18)

where M is given by (7.12), which is a solution of the corresponding BYBE [52, 53]

R12(−u+ v)KL t1
1 (u)M−1

1 R21(−u− v − 2ρ)M1K
L t2
2 (v)

= KL t2
2 (v)M1R12(−u− v − 2ρ)M−1

1 KL t1
1 (u)R21(−u+ v) . (7.19)

7.1.3 Transfer matrix

The open-chain transfer matrix, which maps the quantum space V⊗N to itself, is given by[52]

t(u, p) = traK
L
a (u, p)Ta(u)KR

a (u, p) T̂a(u) , (7.20)

where the single-row monodromy matrices are defined by

Ta(u) = RaN (u) RaN−1(u) · · ·Ra1(u) ,

T̂a(u) = R1a(u) · · ·RN−1a(u) RNa(u) , (7.21)

and the trace in (7.20) is over the “auxiliary” space, which is denoted by a. The transfer matrix is engineered
to satisfy the fundamental commutativity property

[t(u, p) , t(v, p)] = 0 for all u , v , (7.22)

which is the hallmark of integrability. The transfer matrix contains the Hamiltonian (∼ t′(0, p), see Appendix
I) and higher local conserved quantities.The transfer matrix is also crossing invariant

t(u, p) = t(−u− ρ, p) , (7.23)

where the crossing parameter ρ is given by equation (7.10).

7.2 Quantum group symmetry

We now proceed to show that the transfer matrix (7.20) has QG symmetry, in accordance with the second
column in Table 6.1.

A key step of our argument is to use a gauge transformation to bring the right K-matrix “as close
as possible” to the identity matrix. By transforming to this “unitary” gauge, the asymptotic (single-row)
monodromy matrix becomes expressed in terms of only the unbroken symmetry generators, which then allows
us to bring the powerful QISM machinery to bear on the problem. To this end, we set (see e.g. [56])

R̃12(u, p) = B1(u, p)R12(u)B1(−u, p) = B2(−u, p)R12(u)B2(u, p) , (7.24)

and [53]

K̃R(u, p) = B(u, p)KR(u, p)B(u, p) ,

K̃L(u, p) = B(−u, p)KL(u, p)B(−u, p) , (7.25)
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where B(u, p) is a diagonal matrix that maps V to itself, which we choose as follows

B(u, p) = diag
(
e
u
2 , . . . , e

u
2︸ ︷︷ ︸

p

, 1 , . . . , 1︸ ︷︷ ︸
d−2p

, e−
u
2 , . . . , e−

u
2︸ ︷︷ ︸

p

)
. (7.26)

Indeed, this gauge transformation brings KR(u, p) (7.14) to a form with mostly 1’s on the diagonal

K̃R(u, p) = diag
(

1 , . . . , 1︸ ︷︷ ︸
p

,
γeu + 1

γ + eu
, . . . ,

γeu + 1

γ + eu︸ ︷︷ ︸
d−2p

, 1 , . . . , 1︸ ︷︷ ︸
p

)
. (7.27)

For p = n, we see that K̃R(u, n) is exactly equal to I if d = 2n (i.e., for A
(2)
2n−1, C

(1)
n and D

(1)
n ); and K̃R(u, n)

differs from I only in the middle matrix element if d = 2n+ 1 (i.e., for A
(2)
2n and B

(1)
n ).

The matrix B(u, p) satisfies

B(u, p)B(v, p) = B(u+ v, p) , B(0, p) = I , (7.28)

as well as
[B1(u, p)B2(u, p) , R12(v)] = 0 . (7.29)

With the help of these properties, it can be shown that the gauge-transformed R-matrix and K-matrices
continue to satisfy their respective Yang-Baxter equations. The crossing symmetry (7.9) is also maintained,
with [53]

Ṽ (p) = V B(ρ, p) = B(−ρ, p)V , (7.30)

and
M̃(p) = Ṽ t(p) Ṽ (p) = B(ρ, p)M B(ρ, p) . (7.31)

The transfer matrix (7.20) remains invariant under these transformations [53]

t(u, p) = tra K̃
L
a (u, p) T̃a(u, p) K̃R

a (u, p) ̂̃T a(u, p) , (7.32)

where

T̃a(u, p) = R̃aN (u, p) R̃aN−1(u, p) · · · R̃a1(u, p) ,̂̃T a(u, p) = R̃1a(u, p) · · · R̃N−1a(u, p) R̃Na(u, p) . (7.33)

As already remarked in the Introduction, prior to any gauge transformation, the R-matrix has the property
that Ř(u) = PR(u) commutes with the coproducts of generators of the “left” quantum group Uq(g

(l)) in
Table 6.1 with p = 0, i.e.4

p = 0 :
[
Ř(u) ,∆(H

(l)
j (0))

]
= 0 =

[
Ř(u) ,∆(E

± (l)
j (0))

]
, j = 1, . . . , n . (7.34)

In contrast, the gauge-transformed R-matrix given by (7.24) and (7.26) with p = n has the property that
ˇ̃R(u, n) = PR̃(u, n) commutes with the coproducts of generators of the “right” quantum group Uq(g

(r)) in
Table 6.1 with p = n, i.e.

p = n :
[

ˇ̃R(u, n) ,∆(H
(r)
j (n))

]
= 0 =

[
ˇ̃R(u, n) ,∆(E

± (r)
j (n))

]
, j = 1, . . . , n . (7.35)

We now use such gauge transformations to prove the QG invariance of the open-chain transfer matrix t(u, p)
for any integer p ∈ [0, n].

Let us denote by R̃±(p) the asymptotic limits of the gauge-transformed R-matrix R̃(u, p) (7.24)

R̃±(p) = lim
u→±∞

e∓uR̃(u, p) , (7.36)

and we similarly denote by T̃±a (p) the asymptotic limits of the gauge-transformed monodromy matrix T̃a(u, p)
(7.33)

T̃±a (p) = R̃±aN (p) R̃±aN−1(p) · · · R̃±a1(p) . (7.37)

Let us further denote by T̃±i,j(p) (1 ≤ i, j ≤ d) the matrix elements of T̃±a (p) in the auxiliary space, which are

operators on the quantum space V⊗N .

4Further details about the generators, coproducts, etc. can be found in Appendix H.
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We show in Appendix H that the operators T̃±i,j(p) can be expressed in terms of (the quantum enveloping
algebra of) the unbroken ĝ generators, i.e. the generators of the quantum groups in the second column of
Table 6.1. Hence, in order to demonstrate the QG symmetry of the transfer matrix, it suffices to show that[

T̃±i,j(p) , t(u, p)
]

= 0 i, j = 1, 2, . . . , d . (7.38)

To this end, following [95] (see also [64, 66]), we first establish several lemmas.

Lemma 1. [
R̃±12(p) , K̃R

2 (u, p)
]

= 0 . (7.39)

A proof is outlined in Secs. J.4 and J.5.

Lemma 2. [
R̃±12(p) , M̃1(p) K̃L

2 (u, p)
]

= 0 . (7.40)

Proof. We observe that

K̃L(u, p) = K̃R(−u− ρ, p) M̃(p) = M̃(p) K̃R(−u− ρ, p) , (7.41)

as follows from (7.18), (7.31) and (7.25). Hence,

R̃±12(p) M̃1(p)K̃L
2 (u, p) = R̃±12(p) M̃1(p)M̃2(p)K̃R

2 (−u− ρ, p)
= M̃1(p)M̃2(p)R̃±12(p) K̃R

2 (−u− ρ, p)
= M̃1(p)M̃2(p)K̃R

2 (−u− ρ, p) R̃±12(p)

= M̃1(p)K̃L
2 (u, p) R̃±12(p) , (7.42)

where the first and last equalities follow from (7.41); the second equality is a consequence of the fact [53]

[R12(u) ,M1M2] = 0 ; (7.43)

and the third equality follows from Lemma 1 (7.39).

Lemma 3. [
R̃±12(p) T̃±1 (p) , T̃2(u, p) K̃R

2 (u, p) ̂̃T 2(u, p)
]

= 0 . (7.44)

Proof. We recall the gauge-transformed fundamental relation

R̃12(u1 − u2, p) T̃1(u1, p) T̃2(u2, p) = T̃2(u2, p) T̃1(u1, p) R̃12(u1 − u2, p) . (7.45)

Taking asymptotic limits of u1 yields

R̃±12(p) T̃±1 (p) T̃2(u, p) = T̃2(u, p) T̃±1 (p) R̃±12(p) , (7.46)

which further implies
T̃−1

2 (u, p) R̃±12(p) T̃±1 (p) = T̃±1 (p) R̃±12(p) T̃−1
2 (u, p) . (7.47)

Therefore,

R̃±12(p) T̃±1 (p) T̃2(u, p) K̃R
2 (u, p) T̃−1

2 (−u, p)
= T̃2(u, p) T̃±1 (p) R̃±12(p) K̃R

2 (u, p) T̃−1
2 (−u, p)

= T̃2(u, p) K̃R
2 (u, p) T̃±1 (p) R̃±12(p) T̃−1

2 (−u, p)
= T̃2(u, p) K̃R

2 (u, p) T̃−1
2 (−u, p) R̃±12(p) T̃±1 (p) , (7.48)

where the first equality follows from (7.46), the second equality follows from Lemma 1 (7.39), and the third
equality follows from (7.47). We have therefore demonstrated the commutativity property[

R̃±12(p) T̃±1 (p) , T̃2(u, p) K̃R
2 (u, p) T̃−1

2 (−u, p)
]

= 0 . (7.49)

Finally, we see from (7.33) that

T̃−1
a (u, p) = R̃−1

a1 (u, p) · · · R̃−1
aN (u, p)

∝ R̃1a(−u, p) · · · R̃Na(−u, p) = ̂̃T a(−u, p) , (7.50)

where the second line follows from unitarity (7.6). Substituting into (7.49) we obtain the desired result
(7.44).
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Lemma 4.

M̃−1
1 (p)

(
(R̃±12(p))−1

)t2
M̃1(p) R̃± t2

12 (p) = I⊗2 . (7.51)

Proof. We write the gauge-transformed unitarity condition (7.6) as

R̃12(u, p) R̃t1t212 (−u, p) = ζ(u) I⊗2 , (7.52)

and then use crossing symmetry (7.9) to obtain

Ṽ1(p) R̃t212(−u− ρ, p) Ṽ1(p) Ṽ t11 (p) R̃t112(u− ρ, p) Ṽ t11 (p) = ζ(u) I⊗2 , (7.53)

where Ṽ (p) is given by (7.30). By taking asymptotic limits of (7.53) and noting that Ṽ (p)2 = I, we obtain

R̃± t2
12 (p) M̃−1

1 (p) R̃∓ t1
12 (p) M̃1(p) = χ I⊗2 , (7.54)

where χ is given by

χ = lim
u→±∞

e∓2u ζ(u) =
1

4
δ1

2 . (7.55)

Moreover, from (7.52) we obtain
R̃±12(p) R̃∓ t1t2

12 (p) = χ I⊗2 , (7.56)

which implies that

R̃∓ t1t2
12 (p) = χ (R̃±12(p))−1 , or R̃∓ t1

12 (p) = χ
(

(R̃±12(p))−1
)t2

. (7.57)

Substituting into (7.54), we obtain

R̃± t2
12 (p) M̃−1

1 (p)
(

(R̃±12(p))−1
)t2

M̃1(p) = I⊗2 , (7.58)

which can be rearranged to give the desired result (7.51).

We are finally ready to prove the main result (7.38), which is equivalent to the following

Proposition 1. [
T̃±1 (p) , t(u, p)

]
= 0 . (7.59)

Proof. Recalling that the transfer matrix remains invariant under gauge transformations (7.32), we obtain

T̃±1 (p) t(u, p)

= tr2

{
T̃±1 (p) K̃L

2 (u, p) T̃2(u, p) K̃R
2 (u, p) ̂̃T 2(u, p)

}
= tr2

{
M̃−1

1 (p) M̃1(p) K̃L
2 (u, p) (R̃±12(p))−1 R̃±12(p) T̃±1 (p) T̃2(u, p) K̃R

2 (u, p) ̂̃T 2(u, p)
}

= tr2

{
M̃−1

1 (p) (R̃±12(p))−1 M̃1(p) K̃L
2 (u, p) T̃2(u, p) K̃R

2 (u, p) ̂̃T 2(u, p) R̃±12(p) T̃±1 (p)
}

= . . . (7.60)

In passing to the third equality, we have used Lemma 2 (7.40) and Lemma 3 (7.44). Then

. . . = tr2

{
M̃−1

1 (p) (R̃±12(p))−1 M̃1(p) K̃L
2 (u, p) T̃2(u, p) K̃R

2 (u, p) ̂̃T 2(u, p) R̃±12(p)
}
T̃±1 (p)

= tr2

{
A12Q2 R̃

±
12(p)

}
T̃±1 (p)

= tr2

{
At212 R̃

± t2
12 (p)Qt22

}
T̃±1 (p) = . . . (7.61)

In passing to the second line we have made the identifications A12 = M̃−1
1 (p) (R̃±12(p))−1 M̃1(p) and Q2 =

K̃L
2 (u, p) T̃2(u, p) K̃R

2 (u, p) ̂̃T 2(u, p). Finally, we obtain

. . . = tr2

{
M̃−1

1 (p)
(

(R̃±12(p))−1
)t2

M̃1(p) R̃± t2
12 (p)Qt22

}
T̃±1 (p)

= tr2

{
Qt22
}
T̃±1 (p)

= t(u, p) T̃±1 (p) . (7.62)

In passing to the second line we have used Lemma 4 (7.51); and we have used (7.32) again to pass to the
third line.



7.3. DUALITY SYMMETRY 53

7.3 Duality symmetry

We now show that the transfer matrix t(u, p) (7.20) for the cases C
(1)
n and D

(1)
n has a p ↔ n − p “duality”

symmetry. In order to prove the general result (8.12), we need the following lemma:

Lemma 5. The R-matrices for both C
(1)
n and D

(1)
n obey

U1R12(u)U1 = W t
2(u)R12(u)W t

2(u) ,

U2R12(u)U2 = W1(u)R12(u)W1(u) , (7.63)

where U and W (u) are the following (2n)× (2n) matrices

U =

(
0 In×n

In×n 0

)
2n×2n

, U2 = I ,

W (u) =

(
0 e−

u
2 In×n

e
u
2 In×n 0

)
2n×2n

, W (u)2 = I . (7.64)

Furthermore, the K-matrices (7.14) and (7.18) obey

W (u)KR(u, p)W t(u) = fR(u, p)KR(u, n− p)
W t(u)KL(u, p)W (u) = fL(u, p)KL(u, n− p) , (7.65)

where fR(u, p) and fL(u, p) are scalar functions given by

fR(u, p) =
γ0 e

u + e(2n−4p)η

γ0 + eu+(2n−4p)η
,

fL(u, p) =
γ0 e

u + e(4p+2n±4)η

γ0 e(4n±4)η + eu+(4p−2n)η
with

{
+ for C

(1)
n

− for D
(1)
n

, (7.66)

where γ0 = ±1 is a parameter appearing in the K-matrix, see (7.15).

A proof of (7.63) is outlined in Sec. J.3.
The main duality result is given by the following proposition:

Proposition 2. For the cases C
(1)
n and D

(1)
n , the transfer matrix has the duality symmetry

U t(u, p)U = f(u, p) t(u, n− p) , (7.67)

where U is the quantum-space operator

U = U1 . . . UN , U2 = I⊗N , (7.68)

and the scalar factor f(u, p) is given by

f(u, p) = fL(u, p) fR(u, p) . (7.69)

Proof. We see from (7.63) that the monodromy matrices (7.21) transform as follows

U Ta(u)U = Wa(u)Ta(u)Wa(u) ,

U T̂a(u)U = W t
a(u) T̂a(u)W t

a(u) . (7.70)

Evaluating U t(u, p)U using the definition (7.20) of the transfer matrix together with (7.70) and (7.65), we
arrive at the desired result (8.12).

A similar duality symmetry was noted for the case A
(1)
n−1 in [77].

As a consequence of the duality symmetry (8.12), for each eigenvalue Λ(u, p) of t(u, p), there is a corre-
sponding eigenvalue Λ(u, n− p) of t(u, n− p) such that

Λ(u, p) = f(u, p) Λ(u, n− p) . (7.71)
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7.3.1 Action of duality on the QG generators

For the case C
(1)
n , the transfer matrix t(u, p) has the symmetry Uq(Cn−p) ⊗ Uq(Cp) (see again Table 6.1),

while t(u, n− p) (its image under the duality transformation (8.12)) has the symmetry Uq(Cp)⊗ Uq(Cn−p).
Under a duality transformation, the generators of the “left” symmetry factor of t(u, p) (namely, Uq(Cn−p))
are mapped to the generators of the “right” symmetry factor of t(u, n−p) (which is also Uq(Cn−p)). Similarly,
the generators of the “right” symmetry factor of t(u, p) (namely, Uq(Cp)) are mapped to the generators of

the “left” symmetry factor of t(u, n− p) (which is also Uq(Cp)). The case D
(1)
n is identical, except with D’s

replacing the C’s. In other words,

U H
(l)
i (p)U = H

(r)
i (n− p) , U E

± (l)
i (p)U = E

± (r)
i (n− p) , i = 1, 2, . . . , n− p ,

U H
(r)
i (p)U = H

(l)
i (n− p) , U E

± (r)
i (p)U = E

± (l)
i (n− p) , i = 1, 2, . . . , p . (7.72)

and similarly for the coproducts. In order to obtain the general result (7.79), we need a few lemmas.

Lemma 6.
W t(u) = B(u, n− p)U B(−u, p) , (7.73)

where U and W (u) are given by (7.64).

Proof. We evaluate the RHS by writing all three matrices in terms of n× n blocks:

RHS

=


e
u
2 I(n−p)×(n−p)

Ip×p
Ip×p

e−
u
2 I(n−p)×(n−p)

( In×n
In×n

)
B(−u, p)

=


e
u
2 I(n−p)×(n−p)

Ip×p
Ip×p

e−
u
2 I(n−p)×(n−p)




e−
u
2 Ip×p

I(n−p)×(n−p)
I(n−p)×(n−p)

e
u
2 Ip×p


=

(
e
u
2 In×n

e−
u
2 In×n

)
= LHS . (7.74)

Lemma 7. The gauge-transformed R-matrices for C
(1)
n and D

(1)
n obey

U1 R̃12(u, p)U1 = U2 R̃12(u, n− p)U2 . (7.75)

Proof. Recalling the definition of the gauge-transformed R-matrix (7.24), we see that

U1 R̃12(u, p)U1 = U1B2(−u, p)R12(u)B2(u, p)U1

= B2(−u, p)U1R12(u)U1B2(u, p)

= B2(−u, p)W t
2(u)R12(u)W t

2(u)B2(u, p)

= U2B2(−u, n− p)R12(u)B2(u, n− p)U2

= U2 R̃12(u, n− p)U2 . (7.76)

In passing to the third line, we have used the result (7.63); in passing to the fourth line, we use

B(−u, p)W t(u) = U B(−u, n− p) , W t(u)B(u, p) = B(u, n− p)U , (7.77)

which follow from (7.73); and we pass to the last line using again the definition of the gauge-transformed
R-matrix.

Lemma 8. The gauge-transformed monodromy matrices for C
(1)
n and D

(1)
n transform under duality as

U T̃a(u, p)U = Ua T̃a(u, n− p)Ua , (7.78)

where U is given by (7.68).

Proof. This result follows immediately from the definition of T̃a(u, p) (7.33) and the result (7.75).
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Finally, taking asymptotic limits of the result (7.78), we obtain the sought-after result:

Proposition 3. For the cases C
(1)
n and D

(1)
n , the asymptotic gauge-transformed monodromy matrices T̃±a (p)

transform under duality as

U T̃±a (p)U = Ua T̃
±
a (n− p)Ua . (7.79)

From the result (7.79), we can read off the transformation properties of the coproducts of the QG generators
under duality, thereby generalizing (7.72).

7.3.2 Self-duality

For p = n
2 with n even, we see that the duality relation (8.12) implies that the transfer matrix is self-dual[

U , t(u, n2 )
]

= 0 , (7.80)

since f(u, n2 ) = 1. This self-duality symmetry maps the “left” and “right” generators into each other

U H
(l)
i (n2 )U = H

(r)
i (n2 ) , U E

± (l)
i (n2 )U = E

± (r)
i (n2 ) , i = 1, 2, . . . , n2 , (7.81)

as follows from (7.72). Hence, this symmetry maps the representations (1,R) and (R, 1) (i.e., with “left”
and “right” singlets, respectively) into each other; and therefore these states are degenerate (i.e., have the
same transfer-matrix eigenvalue). This degeneracy is discussed further in Section 7.5.

Bonus symmetry for γ0 = −1

For the self-dual cases (namely, C
(1)
n and D

(1)
n with p = n

2 and n even) with γ0 = −1, there is an additional
(“bonus”) symmetry, which leads to even higher degeneracies for the transfer-matrix eigenvalues.

In order to exhibit this symmetry, it is convenient to introduce the matrix Ū , which is similar to the
duality matrix U (7.64),

Ū =


iIn

2×
n
2

−iIn
2×

n
2

−iIn
2×

n
2

iIn
2×

n
2


2n×2n

, Ū2 = I , (7.82)

and which satisfies

ŪU = −UŪ = iD , (7.83)

where D is the diagonal matrix

D = diag
(

1 , . . . , 1︸ ︷︷ ︸
n
2

,−1 , . . . ,−1︸ ︷︷ ︸
n

, 1 , . . . , 1︸ ︷︷ ︸
n
2

)
. (7.84)

Similarly to (7.75), we find that the gauge-transformed R-matrix obeys

Ū1 R̃12(u, n2 ) Ū1 = Ū2 R̃12(u, n2 ) Ū2 , (7.85)

as well as

D1 R̃12(u, n2 )D1 = D2 R̃12(u, n2 )D2 . (7.86)

Moreover, the gauge-transformed right K-matrix (7.27) is equal to D 5

K̃R(u, n2 ) = D . (7.87)

It follows from the BYBE (7.16) that

R̃12(u− v, n2 )D1 R̃21(u+ v, n2 )D2 = D2 R̃12(u+ v, n2 )D1 R̃21(u− v, n2 ) . (7.88)

The key result is given by the following proposition

5We emphasize that the result (7.87) holds only for γ0 = −1, and we assume that γ0 = −1 in the remainder of this subsection.
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Proposition 4. For the cases C
(1)
n and D

(1)
n with p = n

2 (n even) and γ0 = −1, the transfer matrix has the
bonus symmetry [

Ū , t(u, n2 )
]

= 0 , (7.89)

where Ū is the quantum-space operator given by 6

Ū = Ū1U2 · · ·UN , Ū 2 = I⊗N . (7.90)

Proof. We see from (7.85) that the gauge-transformed monodromy matrices (7.33) transform as follows

Ū T̃a(u, n2 ) Ū = −i UaR̃aN (u, n2 ) R̃a,N−1(u, n2 ) · · · R̃a2(u, n2 )Da R̃a1(u, n2 ) Ūa ,

Ū ̂̃T a(u, n2 ) Ū = i Ūa R̃1a(u, n2 )Da R̃2a(u, n2 ) R̃3a(u, n2 ) · · · R̃Na(u, n2 )Ua , (7.91)

where we have also used (7.83). Starting from the gauge-transformed expression for the transfer matrix
(7.32), and also making use of (7.87), we obtain

Ū t(u, n2 ) Ū
= tra K̃

L
a (u, n2 ) R̃aN (u, n2 ) · · · R̃a2(u, n2 )Da R̃a1(u, n2 )Da R̃1a(u, n2 )Da R̃2a(u, n2 ) · · · R̃Na(u, n2 )

= tra K̃
L
a (u, n2 ) R̃aN (u, n2 ) · · · R̃a1(u, n2 )Da R̃1a(u, n2 ) · · · R̃Na(u, n2 )

= tra K̃
L
a (u, n2 ) T̃a(u, n2 )Da

̂̃T a(u, n2 )

= t(u, n2 ) , (7.92)

which implies the desired result (7.89). In passing to the first equality, we have used the cyclic property of
the trace, and the fact Ua K̃

L
a (u, n2 )Ua = −K̃L

a (u, n2 ); and to pass to the second equality, we have used the
result

Da R̃a1(u, n2 )Da R̃1a(u, n2 )Da = R̃a1(u, n2 )Da R̃1a(u, n2 ) , (7.93)

which follows from (7.88).

Recalling the definitions of U (7.68) and Ū (7.90) as well as the property (7.83), it is easy to see that[
U , Ū

]
= −2iD , (7.94)

where D is the quantum-space operator defined by

D = D1 = D ⊗ I⊗(N−1) , D2 = I⊗N . (7.95)

The fact that D commutes with the transfer matrix is now a simple corollary of (7.89):

Corollary. For the cases C
(1)
n and D

(1)
n with p = n

2 (n even) and γ0 = −1, the transfer matrix commutes
with the operator D (7.95) [

D , t(u, n2 )
]

= 0 . (7.96)

Proof. Using (7.94) and the Jacobi identity, we see that[
D , t(u, n2 )

]
=
i

2

[[
U , Ū

]
, t(u, n2 )

]
= − i

2

[[
Ū , t(u, n2 )

]
,U
]
− i

2

[[
t(u, n2 ) ,U

]
, Ū
]

= 0 , (7.97)

where the final equality follows from the symmetries (8.13) and (7.89).

The symmetry (7.96) gives rise to additional degeneracies of the transfer-matrix eigenvalues. Indeed, let
|Λ〉 be a simultaneous eigenket of the transfer matrix and of the self-duality operator U ,

t(u, n2 ) |Λ〉 = Λ(u, n2 ) |Λ〉 ,
U |Λ〉 = µ |Λ〉 , µ = ±1 . (7.98)

Since U and D do not commute7 , |Λ〉 is not necessarily an eigenket of D, in which case D |Λ〉 is a linearly
independent eigenket with the same transfer-matrix eigenvalue Λ(u, n2 ) as |Λ〉. Note that |Λ〉 necessarily
belongs to a QG representation of the form (R,R) or (R1,R2) ⊕ (R2,R1); hence, the bonus symmetry
implies the existence of a second set of states of the form (R,R) or (R1,R2)⊕ (R2,R1). In particular, the
degeneracy of the corresponding transfer-matrix eigenvalue becomes doubled as a consequence of the bonus
symmetry.

6Note that Ū contains only one factor of Ū ; all the other factors are U .
7Indeed, [U ,D] = [U ,D]⊗ U ⊗ · · · ⊗ U = 2i Ū , see (7.83).
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7.4 Z2 symmetries

We now show that the transfer matrix t(u, p) (7.20) has a discrete “right” Z2 symmetry that maps complex

representations of Uq(Dp) to their conjugates for the cases A
(2)
2n−1, B

(1)
n and D

(1)
n ; and, for the latter case,

there is an additional “left” Z2 symmetry that maps complex representations of Uq(Dn−p) to their conjugates.
We shall see in Section 7.5 that these discrete symmetries give rise to degeneracies in the spectrum beyond
those expected from QG symmetry.8

7.4.1 The “right” Z2

In order to prove the main result (8.14), we need the following lemma:

Lemma 9. The R-matrices for A
(2)
2n−1, B

(1)
n and D

(1)
n obey

Z
(r)
1 R12(u)Z

(r)
1 = Y t2 (u)R12(u)Y t2 (u) ,

Z
(r)
2 R12(u)Z

(r)
2 = Y1(u)R12(u)Y1(u) , (7.99)

where Z(r) and Y (u) are the following d× d matrices

Z(r) =

 0 0 1
0 I(d−2)×(d−2) 0
1 0 0


d×d

, Z(r) 2 = I ,

Y (u) =

 0 0 e−u

0 I(d−2)×(d−2) 0
eu 0 0


d×d

, Y (u)2 = I . (7.100)

Furthermore, for p > 0, the K-matrices (7.14) and (7.18) obey

Y (u)KR(u, p)Y t(u) = KR(u, p) ,

Y t(u)KL(u, p)Y (u) = KL(u, p) . (7.101)

A proof of (7.99) is outlined in Sec. J.2.
The main result concerning the “right” Z2 symmetry is contained in the following proposition:

Proposition 5. For the cases A
(2)
2n−1, B

(1)
n and D

(1)
n with p > 0, the transfer matrix has the “right” Z2

symmetry [
Z(r) , t(u, p)

]
= 0 , (7.102)

where Z(r) is the quantum-space operator

Z(r) = Z
(r)
1 . . . Z

(r)
N , Z(r) 2 = I⊗N . (7.103)

Proof. We see from (7.99) that the monodromy matrices (7.21) transform as follows

Z(r) Ta(u)Z(r) = Ya(u)Ta(u)Ya(u) ,

Z(r) T̂a(u)Z(r) = Y ta (u) T̂a(u)Y ta (u) . (7.104)

Evaluating Z(r) t(u, p)Z(r) using the definition (7.20) of the transfer matrix together with (7.104) and (7.101),
we arrive at the result (8.14).

Action of the “right” Z2 on the QG generators

In order to determine the action of the “right” Z2 on the QG generators, we use a set of lemmas that are
analogous to (7.73), (7.75) and (7.78), and which have similar proofs:

Lemma 10.
Y (u) = B(−u, p)Z(r)B(u, p) , p > 0 , (7.105)

where Z(r) and Y (u) are given by (7.100).

8The Z2 symmetry for the case A
(2)
2n−1 with p = n was conjectured in [87].
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Lemma 11. The gauge-transformed R-matrices (7.24) for A
(2)
2n−1, B

(1)
n and D

(1)
n with p > 0 obey

Z
(r)
1 R̃12(u, p)Z

(r)
1 = Z

(r)
2 R̃12(u, p)Z

(r)
2 . (7.106)

Lemma 12. The gauge-transformed monodromy matrices (7.33) for A
(2)
2n−1, B

(1)
n and D

(1)
n with p > 0

transform under the “right” Z2 as

Z(r) T̃a(u, p)Z(r) = Z(r)
a T̃a(u, p)Z(r)

a . (7.107)

Finally, taking asymptotic limits of the result (7.107), we obtain the sought-after result:

Proposition 6. For the cases A
(2)
2n−1, B

(1)
n and D

(1)
n with p > 0, the asymptotic gauge-transformed mon-

odromy matrices T̃±a (p) transform under the “right” Z2 as

Z(r) T̃±a (p)Z(r) = Z(r)
a T̃±a (p)Z(r)

a . (7.108)

We can read off from this result how the coproducts of the “right” QG generators transform under this
Z2 symmetry. In particular, we observe that

Z(r)
a H

(r)
j Z(r)

a =

{
H

(r)
j for j = 1, . . . , p− 1 ,

−H(r)
p for j = p

,

Z(r)
a E

±(r)
j Z(r)

a =

{
E
±(r)
j for j = 1, . . . , p− 2 ,

E
±(r)
p for j = p− 1

. (7.109)

Hence, this transformation maps complex representations of Uq(Dp) to their conjugates.

7.4.2 The “left” Z2

In order to prove the main result (8.15), we need the following lemma:

Lemma 13. The R-matrix for D
(1)
n obeys

Z
(l)
1 R12(u)Z

(l)
1 = Z

(l)
2 R12(u)Z

(l)
2 , (7.110)

where Z(l) is the following 2n× 2n matrix

Z(l) =


I(n−1)×(n−1)

0 1
1 0

I(n−1)×(n−1)


2n×2n

, Z(l) 2 = I . (7.111)

Furthermore, for p < n, the K-matrices (7.14) and (7.18) obey

Z(l)KR(u, p)Z(l) = KR(u, p) ,

Z(l)KL(u, p)Z(l) = KL(u, p) . (7.112)

A proof of (7.110) is outlined in Sec. J.1.
The main result concerning the “left” Z2 symmetry is contained in the following proposition:

Proposition 7. For the case D
(1)
n with p < n, the transfer matrix has the “left” Z2 symmetry[

Z(l) , t(u, p)
]

= 0 , (7.113)

where Z(l) is the quantum-space operator

Z(l) = Z
(l)
1 . . . Z

(l)
N , Z(l) 2 = I⊗N . (7.114)

Proof. We see from (7.110) that the monodromy matrices (7.21) transform as follows

Z(l) Ta(u)Z(l) = Z(l)
a Ta(u)Z(l)

a ,

Z(l) T̂a(u)Z(l) = Z(l)
a T̂a(u)Z(l)

a . (7.115)

Evaluating Z(l) t(u, p)Z(l) using the definition (7.20) of the transfer matrix together with (7.115) and (7.112),
we arrive at the result (8.15).
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Action of the “left” Z2 on the QG generators

The gauge-transformed R-matrix (7.24) for D
(1)
n with p < n obeys

Z
(l)
1 R̃12(u, p)Z

(l)
1 = Z

(l)
2 R̃12(u, p)Z

(l)
2 , (7.116)

in view of the property (7.110) and the fact that
[
Z(l) , B(u, p)

]
= 0 for p < n. Hence, the gauge-transformed

monodromy matrices (7.33) transform as follows

Z(l) T̃a(u, p)Z(l) = Z(l)
a T̃a(u, p)Z(l)

a ,

Z(l) ̂̃T a(u, p)Z(l) = Z(l)
a
̂̃T a(u, p)Z(l)

a . (7.117)

Taking asymptotic limits of this result gives the following proposition:

Proposition 8. For the case D
(1)
n with p < n, the asymptotic gauge-transformed monodromy matrices T̃±a (p)

transform under the “left” Z2 as

Z(l) T̃±a (p)Z(l) = Z(l)
a T̃±a (p)Z(l)

a . (7.118)

We can read off from this result how the coproducts of the “left” QG generators transform under this Z2

symmetry. In particular, we observe that

Z(l)
a H

(l)
j Z(l)

a =

{
H

(l)
j for j = 1, . . . , n− p− 1 ,

−H(l)
n−p for j = n− p

,

Z(l)
a E

±(l)
j Z(l)

a =

{
E
±(l)
j for j = 1, . . . , n− p− 2 ,

E
±(l)
n−p for j = n− p− 1

. (7.119)

Hence, this transformation maps complex representations of Uq(Dn−p) to their conjugates.

7.5 Degeneracies of the transfer matrix

The symmetries identified above can be used to understand the degeneracies in the spectrum of the transfer
matrix. Most importantly, the QG symmetries of the transfer matrix (7.59), summarized in Table 6.1, are
directly manifested in the degeneracies of the spectrum. Indeed, for generic values of the anisotropy parameter
η, the N -site Hilbert space V⊗N can be decomposed into a direct sum of irreducible representations of the
corresponding classical group, whose dimensions are generally equal to the degeneracies of the eigenvalues.

For the cases A
(2)
2n−1, B

(1)
n and D

(1)
n , the transfer matrix has an additional “right” Z2 symmetry (8.14)

that maps complex representations of Uq(Dp) to their conjugates. Moreover, for the case D
(1)
n , the transfer

matrix also has a “left” Z2 symmetry (8.15) that maps complex representations of Uq(Dn−p) to their con-
jugates. Consequently, the degeneracies of eigenvalues corresponding to complex representations are larger
than expected from the decomposition of the Hilbert space.

For the cases C
(1)
n and D

(1)
n with n even and p = n

2 , the transfer matrix has a self-duality symmetry (8.13)
that maps the representations (1,R) and (R, 1) into each other, and therefore those states are degenerate.
If γ0 = −1, then there is a bonus symmetry (7.89), (7.96) that leads to additional degeneracies.

For the cases C
(1)
n and D

(1)
n with n odd and p = n±1

2 , we also observe some higher degeneracies, which
presumably can also be attributed to some discrete symmetries that remain to be elucidated.

We now consider examples of each of these cases.

7.5.1 A
(2)
2n

For A
(2)
2n and generic values of η, the degeneracies of the transfer matrix exactly match with the predictions

from the decomposition of the Hilbert space based on the QG symmetry. That is, in contrast with the other
cases considered below, we do not find any higher degeneracies. As an example, let us consider the case n = 5
and N = 2 (two sites). By direct diagonalization of the transfer matrix t(u, p) for generic numerical values
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of u and η, we find that the degeneracies are as follows:

p = 0 : {1, 55, 65}
p = 1 : {1, 1, 3, 18, 18, 36, 44}
p = 2 : {1, 1, 5, 10, 21, 27, 28, 28}
p = 3 : {1, 1, 10, 14, 14, 21, 30, 30}
p = 4 : {1, 1, 3, 5, 24, 24, 27, 36}
p = 5 : {1, 1, 10, 10, 44, 55} . (7.120)

In other words, for p = 0, one eigenvalue is repeated 65 times, another eigenvalue is repeated 55 times, and
another eigenvalue appears only once; and similarly for other values of p.

On the other hand, according to Table 6.1, the symmetry for A
(2)
2n with n = 5 is Uq(B5−p)⊗Uq(Cp), and

the representation at each site is V = (11− 2p, 1)⊕ (1, 2p). For generic values of η, the QG representations
are the same as for the corresponding classical groups. Performing the tensor-product decompositions here
and below using LieART [96], we obtain9

p = 0 : B5 (11)⊗2 = 1⊕ 55⊕ 65

p = 1 : B4 ⊗ C1 ((9,1)⊕ (1,2))⊗2 = 2(1,1)⊕ (1,3)⊕ 2(9,2)⊕ (36,1)⊕ (44,1)

p = 2 : B3 ⊗ C2 ((7,1)⊕ (1,4))⊗2 = 2(1,1)⊕ (1,5)⊕ 2(7,4)⊕ (1,10)⊕ (21,1)⊕ (27,1)

p = 3 : B2 ⊗ C3 ((5,1)⊕ (1,6))⊗2 = 2(1,1)⊕ 2(5,6)⊕ (10,1)⊕ (1,14)⊕ (14,1)⊕ (1,21)

p = 4 : B1 ⊗ C4 ((3,1)⊕ (1,8))⊗2 = 2(1,1)⊕ (3,1)⊕ (5,1)⊕ 2(3,8)⊕ (1,27)⊕ (1,36)

p = 5 : C5 (1⊕ 10)⊗2 = 2(1)⊕ 2(10)⊕ 44⊕ 55 . (7.121)

Comparing the degeneracies (7.120) with the corresponding tensor-product decompositions (7.121), we see
that they exactly match. We obtain similar results for other values of n and N . The special cases p = 0 and
p = n are discussed further in [86].

7.5.2 A
(2)
2n−1

For A
(2)
2n−1 and generic values of η, the degeneracies of the transfer matrix either match with the predictions

from QG symmetry, or are larger due to the “right” Z2 symmetry (8.14). As an example, let us consider
the case n = 5 and N = 2 (two sites). By direct diagonalization of the transfer matrix t(u, p) for generic
numerical values of u and η, we find that the degeneracies are as follows:

p = 0 : {1, 44, 55}
p = 2 : {1, 1, 6, 9, 14, 21, 24, 24}
p = 3 : {1, 1, 5, 10, 15, 20, 24, 24}
p = 4 : {1, 1, 3, 16, 16, 28, 35}
p = 5 : {1, 45, 54} . (7.122)

Note that we exclude the case p = 1.

On the other hand, according to Table 6.1, the symmetry for A
(2)
2n−1 with n = 5 and p 6= 1 is Uq(C5−p)⊗

Uq(Dp), and the representation at each site is V = (10− 2p, 1)⊕ (1, 2p). The tensor-product decompositions
are as follows:

p = 0 : C5 (10)⊗2 = 1⊕ 44⊕ 55

p = 2 : C3 ⊗D2 ((6,1)⊕ (1,4))⊗2 = 2(1,1)⊕ (1,3)⊕ (1, 3̄)⊕ 2(6,4)⊕ (1,9)

⊕ (14,1)⊕ (21,1)

p = 3 : C2 ⊗D3 ((4,1)⊕ (1,6))⊗2 = 2(1,1)⊕ (5,1)⊕ 2(4,6)⊕ (10,1)

⊕ (1,15)⊕ (1,20′)

p = 4 : C1 ⊗D4 ((2,1)⊕ (1,8v))
⊗2 = 2(1,1)⊕ (3,1)⊕ 2(2,8v)⊕ (1,28)⊕ (1,35v)

p = 5 : D5 (10)⊗2 = 1⊕ 45⊕ 54 . (7.123)

Comparing the degeneracies (7.122) with the corresponding tensor-product decompositions (7.123), we see
that they match, except for p = 2. For the latter case, the degeneracies are larger, due to the “right” Z2

symmetry mapping complex representations of Dp to their conjugates (here, the 3 and 3̄). We obtain similar
results for other values of n and N . The special cases p = 0 and p = n are discussed further in [87].

9We recall that A1 = B1 = C1, while the Dn series starts with n = 2.
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7.5.3 B
(1)
n

For B
(1)
n and generic values of η, the degeneracies of the transfer matrix also either match with the predictions

from QG symmetry, or are larger due to the “right” Z2 symmetry (8.14). As an example, let us consider
the case n = 5 and N = 2 (two sites). By direct diagonalization of the transfer matrix t(u, p) for generic
numerical values of u and η, we find that the degeneracies are as follows:

p = 0 : {1, 55, 65}
p = 2 : {1, 1, 6, 9, 21, 27, 28, 28}
p = 3 : {1, 1, 10, 14, 15, 20, 30, 30}
p = 4 : {1, 1, 3, 5, 24, 24, 28, 35}
p = 5 : {1, 1, 10, 10, 45, 54} . (7.124)

Note that we again exclude the case p = 1.

On the other hand, according to Table 6.1, the symmetry for B
(1)
n with n = 5 and p 6= 1 is Uq(B5−p) ⊗

Uq(Dp), and the representation at each site is V = (11− 2p, 1)⊕ (1, 2p). The tensor-product decompositions
are as follows:

p = 0 : B5 (11)⊗2 = 1⊕ 55⊕ 65

p = 2 : B3 ⊗D2 ((7,1)⊕ (1,4))⊗2 = 2(1,1)⊕ (1,3)⊕ (1, 3̄)⊕ (1,9)⊕ 2(7,4)

⊕ (21,1)⊕ (27,1)

p = 3 : B2 ⊗D3 ((5,1)⊕ (1,6))⊗2 = 2(1,1)⊕ 2(5,6)⊕ (10,1)⊕ (14,1)

⊕ (1,15)⊕ (1,20′)

p = 4 : B1 ⊗D4 ((3,1)⊕ (1,8v))
⊗2 = 2(1,1)⊕ (3,1)⊕ (5,1)⊕ 2(3,8v)⊕ (1,28)⊕ (1,35v)

p = 5 : D5 (1⊕ 10)⊗2 = 2(1)⊕ 2(10)⊕ 45⊕ 54 . (7.125)

Comparing the degeneracies (7.124) with the corresponding tensor-product decompositions (7.125), we see
that they match, except for p = 2. For the latter case, the degeneracies are larger, due to the “right” Z2

symmetry mapping complex representations of Dp to their conjugates (here, the 3 and 3̄). We obtain similar
results for other values of n and N .

7.5.4 C
(1)
n

For C
(1)
n and generic values of η, the degeneracies of the transfer matrix match with the predictions from QG

symmetry, except when n is even and p = n
2 (in which case there is a self-duality symmetry (8.13)) or when

n is odd and p = n±1
2 . Moreover, the spectrum exhibits a p→ n− p duality symmetry.

Example 1: even n

As a first example, let us consider the case n = 4 and N = 2 (two sites). By direct diagonalization of the
transfer matrix t(u, p) for generic numerical values of u and η, we find that the degeneracies are as follows:

p = 0 : {1, 27, 36}
p = 1 : {1, 1, 3, 12, 12, 14, 21}

p = 2 :

{
{1, 1, 10, 16, 16, 20} for γ0 = +1

{2, 10, 20, 32} for γ0 = −1

p = 3 : {1, 1, 3, 12, 12, 14, 21}
p = 4 : {1, 27, 36} . (7.126)

The fact that the degeneracies are the same for p and n− p is a consequence of the duality symmetry (8.12),
(7.71).

On the other hand, according to Table 6.1, the symmetry for C
(1)
n with n = 4 is Uq(C4−p)⊗Uq(Cp), and

the representation at each site is V = (8− 2p, 1)⊕ (1, 2p). The tensor-product decompositions are as follows:

p = 0 : C4 (8)⊗2 = 1⊕ 27⊕ 36

p = 1 : C3 ⊗ C1 ((6,1)⊕ (1,2))⊗2 = 2(1,1)⊕ (1,3)⊕ 2(6,2)⊕ (14,1)⊕ (21,1)

p = 2 : C2 ⊗ C2 ((4,1)⊕ (1,4))⊗2 = 2(1,1)⊕ (5,1)⊕ (1,5)⊕ 2(4,4)⊕ (10,1)⊕ (1,10) . (7.127)
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There is no need to display the tensor-product decompositions for p > 2 due to the symmetry p→ n− p.
Comparing the degeneracies (7.126) with the corresponding tensor-product decompositions (7.127), we

see that they match, except for p = 2. For the latter case, the degeneracies are larger, due to the self-duality
symmetry (8.13) for even n and p = n

2 , which here maps (1,5) to (5,1) (resulting in a 10-fold degeneracy),
and also maps (1,10) to (10,1) (resulting in a 20-fold degeneracy). If γ0 = −1, then the bonus symmetry
(7.89), (7.96) implies that the two (4,4) are degenerate (giving rise to a 32-fold degeneracy), as well as the
two (1,1) (resulting in a 2-fold degeneracy).

Example 2: odd n

As a second example, let us consider the case n = 5 and N = 2 (two sites). By direct diagonalization of the
transfer matrix t(u, p) for generic numerical values of u and η, we find that the degeneracies are as follows:

p = 0 : {1, 44, 55}
p = 1 : {1, 1, 3, 16, 16, 27, 36}
p = 2 : {1, 1, 5, 21, 34, 38}
p = 3 : {1, 1, 5, 21, 34, 38}
p = 4 : {1, 1, 3, 16, 16, 27, 36}
p = 5 : {1, 44, 55} . (7.128)

We see again that the degeneracies are the same for p and n− p, as a consequence of the duality symmetry
(8.12), (7.71).

On the other hand, according to Table 6.1, the symmetry for C
(1)
n with n = 5 is Uq(C5−p)⊗Uq(Cp), and

the representation at each site is V = (10−2p, 1)⊕ (1, 2p). The tensor-product decompositions are as follows:

p = 0 : C5 (10)⊗2 = 1⊕ 44⊕ 55

p = 1 : C4 ⊗ C1 ((8,1)⊕ (1,2))⊗2 = 2(1,1)⊕ (1,3)⊕ 2(8,2)⊕ (27,1)⊕ (36,1)

p = 2 : C3 ⊗ C2 ((6,1)⊕ (1,4))⊗2 = 2(1,1)⊕ (1,5)⊕ 2(6,4)⊕ (1,10)⊕ (14,1)⊕ (21,1) . (7.129)

Again, there is no need to display the tensor-product decompositions for p > 2 due to the symmetry p→ n−p.
Comparing the degeneracies (7.128) with the corresponding tensor-product decompositions (7.129), we

see that they match, except for p = 2. For the latter case, the degeneracies are larger: the (1,10) and one
(6,4) are degenerate (resulting in a 34-fold degeneracy); and the (14,1) and the other (6,4) are degenerate
(resulting in a 38-fold degeneracy). We expect that such degeneracies for odd n and p = n±1

2 can be attributed
to some discrete symmetries, which remain to be elucidated.

7.5.5 D
(1)
n

For D
(1)
n and generic values of η, the degeneracies of the transfer matrix match with the predictions from QG

symmetry, except for the following exceptions: when n is even and p = n
2 (in which case there is a self-duality

symmetry (8.13)); when n is odd and p = n±1
2 ; and when there are additional degeneracies due to the “right”

and “left” Z2 symmetries (8.14), (8.15). Moreover, the spectrum exhibits a p→ n− p duality symmetry.

Example 1: even n

As a first example, let us consider the case n = 6 and N = 2 (two sites). By direct diagonalization of the
transfer matrix t(u, p) for generic numerical values of u and η, we find that the degeneracies are as follows:

p = 0 : {1, 66, 77}
p = 2 : {1, 1, 6, 9, 28, 32, 32, 35}

p = 3 :

{
{1, 1, 30, 36, 36, 40} for γ0 = +1

{2, 30, 40, 72} for γ0 = −1

p = 4 : {1, 1, 6, 9, 28, 32, 32, 35}
p = 6 : {1, 66, 77} . (7.130)

Note that we exclude the cases p = 1 and p = n− 1. The fact that the degeneracies are the same for p and
n− p is a consequence of the duality symmetry (8.12), (7.71).
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On the other hand, according to Table 6.1, the symmetry for D
(1)
n with n = 6 and p 6= 1, n − 1 is

Uq(D6−p) ⊗ Uq(Dp), and the representation at each site is V = (12 − 2p, 1) ⊕ (1, 2p). The tensor-product
decompositions are as follows:

p = 0 : D6 (12)⊗2 = 1⊕ 66⊕ 77

p = 2 : D4 ⊗D2 ((8v,1)⊕ (1,4))⊗2 = 2(1,1)⊕ (1,3)⊕ (1, 3̄)⊕ (1,9)⊕ 2(8v,4)

⊕ (28,1)⊕ (35v,1)

p = 3 : D3 ⊗D3 ((6,1)⊕ (1,6))⊗2 = 2(1,1)⊕ 2(6,6)⊕ (15,1)⊕ (1,15)

⊕ (20′,1)⊕ (1,20′) . (7.131)

There is no need to display the tensor-product decompositions for p > 3 due to the symmetry p→ n− p.
Comparing the degeneracies (7.130) with the corresponding tensor-product decompositions (7.131), we

see that they match for p = 0. For p = 2, the degeneracies are larger due to the the “right” Z2 symmetry
(8.14), which maps (1,3) to (1, 3̄), and results in a 6-fold degeneracy.

For p = 3, the degeneracies are larger due to the self-duality symmetry (8.13) for even n and p = n
2 , which

maps (1,15) to (15,1) (resulting in a 30-fold degeneracy), and also maps (1,20′) to (20′,1) (resulting in
a 40-fold degeneracy). If γ0 = −1, then the bonus symmetry (7.89), (7.96) implies that the two (6,6) are
degenerate (giving rise to a 72-fold degeneracy), as well as the two (1,1) (resulting in a 2-fold degeneracy).

Example 2: odd n

As a second example, let us consider the case n = 5 and N = 2 (two sites). By direct diagonalization of the
transfer matrix t(u, p) for generic numerical values of u and η, we find that the degeneracies are as follows:

p = 0 : {1, 45, 54}
p = 2 : {1, 1, 6, 20, 33, 39}
p = 3 : {1, 1, 6, 20, 33, 39}
p = 5 : {1, 45, 54} . (7.132)

We again exclude the cases p = 1, n− 1, and observe that the degeneracies are the same for p and n− p, as
a consequence of the duality symmetry (8.12), (7.71).

On the other hand, according to Table 6.1, the symmetry for D
(1)
n with n = 5 and p 6= 1, n − 1 is

Uq(D5−p) ⊗ Uq(Dp), and the representation at each site is V = (10 − 2p, 1) ⊕ (1, 2p). The tensor-product
decompositions are as follows:

p = 0 : D5 (10)⊗2 = 1⊕ 45⊕ 54

p = 2 : D3 ⊗D2 ((6,1)⊕ (1,4))⊗2 = 2(1,1)⊕ (1,3)⊕ (1, 3̄)⊕ 2(6,4)⊕ (1,9)

⊕ (15,1)⊕ (20′,1) . (7.133)

Again, there is no need to display the tensor-product decompositions for p > 2 due to the symmetry p→ n−p.
Comparing the degeneracies (7.132) with the corresponding tensor-product decompositions (7.133), we

see that they match for p = 0. For p = 2, the 6-fold degeneracy is due to “right” Z2 symmetry, which maps
(1,3) to (1, 3̄). Moreover, the (1,9) and one (6,4) are degenerate (resulting in a 33-fold degeneracy); and
the (15,1) and the other (6,4) are degenerate (resulting in a 39-fold degeneracy). We expect that such
degeneracies for odd n and p = n±1

2 can be attributed to some discrete symmetries, which remain to be
elucidated.
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Chapter 8

The spectrum of
quantum-group-invariant transfer
matrices

The outline of this chapter is as follows. The key results of the Chapter 7 and [88, 89] are briefly reviewed
in Sec. 8.1. Expressions for the eigenvalues of the transfer matrix and corresponding Bethe equations are
obtained in Sec. 8.2. Formulas for the Dynkin labels of the Bethe states (in terms of the numbers of Bethe
roots of each type) are obtained and illustrated with some examples in Sec. 8.3. We briefly study how duality
transformations are implemented on the Bethe ansatz solutions in Sec. 8.4. A connection between “bonus”
symmetry and singular solutions of the Bethe equations is noted in Appendix K, and some additional cases
are considered in Appendix L.

8.1 Review of previous results

8.1.1 R-matrix

As in the previous chapter, we consider here the trigonometric R-matrices given by Jimbo [56] (except

for A
(2)
2n−1, in which case we consider instead Kuniba’s R-matrix [58]), corresponding to the following non-

exceptional affine Lie algebras

ĝ =
{
A

(2)
2n−1 , A

(2)
2n , B

(1)
n , C(1)

n , D(1)
n , D

(2)
n+1

}
. (8.1)

We use the specific expressions for the R-matrices given in Appendix G (including the one for D
(2)
n+1 tat had

not been discussed in the previous chapter). We emphasize that we consider here exclusively generic values
of η. Various useful parameters related to these R-matrices are collected in Table 8.1. In particular, d is the
dimension of the vector space at each site of the spin chain; hence, the R-matrix is a d2 × d2 matrix. Also,
δ = 0 (δ = 2) for the untwisted (twisted) cases, respectively.

ĝ A
(2)
2n−1 A

(2)
2n B

(1)
n C

(1)
n D

(1)
n D

(2)
n+1

d 2n 2n+ 1 2n+ 1 2n 2n 2n+ 2

κ 2n 2n+ 1 2n− 1 2n+ 2 2n− 2 2n

ρ −2κη − iπ −2κη − iπ −2κη −2κη −2κη −κη
ω κ+ 2 κ− 2 κ+ 2 κ− 2 κ+ 2 κ

ω̄ κ− 2 κ+ 2 κ− 2 κ+ 2 κ− 2 κ

δ 2 2 0 0 0 2

ξ 1 0 0 1 0 0

ξ′ 0 0 0 0 1 0

Table 8.1: Parameters related to the R-matrices.
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8.1.2 K-matrices

For all the cases except D
(2)
n+1, we take the right K-matrices given by the expressions (7.14) and (7.15) where

p is a discrete parameter taking the values

p = 0, ..., n for A
(2)
2n , C

(1)
n ,

p = 0, ..., n , p 6= 1 , for A
(2)
2n−1 , B

(1)
n ,

p = 0, ..., n , p 6= 1 , n− 1 , for D(1)
n . (8.2)

and γ0 is another discrete parameter
γ0 = ±1 . (8.3)

It is convenient to define the corresponding parameter

ε =
1− γ0

2
, (8.4)

which therefore can take the values ε = 0, 1.
Note that in (8.2) (as well as in the previous chapter) the following cases are excluded:

A
(2)
2n−1 with p = 1,

B(1)
n with p = 1,

D(1)
n with p = 1 , n− 1 . (8.5)

For these cases, to which we henceforth refer as “special” cases, we take instead the following right K-matrices:

KR(u, 1) = diag(e−2u, 1, ..., 1︸ ︷︷ ︸
d−2

, e2u) (8.6)

for A
(2)
2n−1 , B

(1)
n , D

(1)
n with p = 1; and

KR(u, n− 1) = diag( e−u, ..., e−u︸ ︷︷ ︸
n−1

, eu , e−u, eu, ..., eu︸ ︷︷ ︸
n−1

) (8.7)

for D
(1)
n with p = n − 1. We choose these K-matrices because they lead to QG symmetry, as explained in

Sec. 8.1.3.
For the case D

(2)
n+1, the right K-matrix is given by the d× d block-diagonal matrix [89]1

KR(u, p) =



k−(u)Ip×p
g(u)I(n−p)×(n−p)

k1(u) k2(u)

k2(u) k1(u)

g(u)I(n−p)×(n−p)

k+(u)Ip×p


, (8.8)

where

k±(u) = e±2u ,

g(u) =
cosh

(
u− (n− 2p)η + iπ

2 ε
)

cosh
(
u+ (n− 2p)η − iπ

2 ε
) ,

k1(u) =
cosh(u) cosh

(
(n− 2p)η + iπ

2 ε
)

cosh
(
u+ (n− 2p)η + iπ

2 ε
) ,

k2(u) = − sinh(u) sinh
(
(n− 2p)η + iπ

2 ε
)

cosh
(
u+ (n− 2p)η + iπ

2 ε
) . (8.9)

and ε is, again, a discrete parameter that can take the values ε = 0, 1.

1The D
(2)
n+1 K-matrices KR(u, n) (i.e. with p = n) with ε = 0 and ε = 1 are proportional to the D

(2)
n+1 K-matrices K−(u) in

[87] for the cases I and II, respectively; explicitly, K−
[87]I,II(u) = −2e2u+nη cosh

(
u− nη + iπ

2
ε
)
KR(u, n).
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Finally, for the left K-matrices, we take (as in the previous chapter) [52, 53]

KL(u, p) = KR(−u− ρ, p)M , (8.10)

which is a solution of left boundary Yang-Baxter equation (7.19), and corresponds to imposing the “same”
boundary conditions on the two ends.

Using then the R-matrices and K-matrices mentioned above we can use the same description presented
in the subsection 7.1.3 to construct the transfer matrices.

8.1.3 Symmetries of the transfer matrix

It has been shown in the previous chapter (for all the cases except D
(2)
n+1) and in [88, 89] that the transfer

matrices (7.20) constructed using the K-matrices (7.14) and (8.8) have the QG symmetries in Table 8.2. For

ĝ QG symmetry Representation at each site

A
(2)
2n−1 Uq(Cn−p)⊗ Uq(Dp) (p 6= 1) (2(n− p), 1)⊕ (1, 2p)

A
(2)
2n Uq(Bn−p)⊗ Uq(Cp) (2(n− p) + 1, 1)⊕ (1, 2p)

B
(1)
n Uq(Bn−p)⊗ Uq(Dp) (p 6= 1) (2(n− p) + 1, 1)⊕ (1, 2p)

C
(1)
n Uq(Cn−p)⊗ Uq(Cp) (2(n− p), 1)⊕ (1, 2p)

D
(1)
n Uq(Dn−p)⊗ Uq(Dp) (n > 1 , p 6= 1 , n− 1) (2(n− p), 1)⊕ (1, 2p)

D
(2)
n+1 Uq(Bn−p)⊗ Uq(Bp) (2(n− p) + 1, 1)⊕ (1, 2p+ 1)

Table 8.2: QG symmetries of the transfer matrix t(u, p), where p = 0, 1, . . . , n.
.

0 < p < n, the QG symmetries are given by a tensor product of two factors, to which we refer as the “left”
and “right” factors. For p = 0, the “right” factors are absent; while for p = n, the “left” factors are absent.
That is, [

∆N (H
(l)
i (p)) , t(u, p)

]
=
[
∆N (E

±(l)
i (p)) , t(u, p)

]
= 0 , i = 1 , . . . , n− p ,[

∆N (H
(r)
i (p)) , t(u, p)

]
=
[
∆N (E

±(r)
i (p)) , t(u, p)

]
= 0 , i = 1 , . . . , p , (8.11)

where H
(l)
i (p) , E

±(l)
i (p) are generators of the “left” algebra g(l) ; H

(r)
i (p) , E

±(r)
i (p) are generators of the

“right” algebra g(r) ; and ∆N denotes the N -fold coproduct2.
It can be shown in a similar way that the transfer matrices for the “special” cases (8.5), which are

constructed using the K-matrices (8.6)-(8.7), have the QG symmetries in Table 8.3.3

ĝ QG symmetry Representation at each site

A
(2)
2n−1(p = 1) Uq(Cn) 2n

B
(1)
n (p = 1) Uq(Bn) 2n+ 1

D
(1)
n (n > 1, p = 1, n− 1) Uq(Dn) 2n

Table 8.3: QG symmetries of the transfer matrix t(u, p) for the “special” cases (8.5).

The QG symmetries displayed in Tables 8.2 and 8.3 correspond to removing the pth node from the ĝ
Dynkin diagram, as can be seen in Fig. 8.1.

For the cases C
(1)
n , D

(1)
n and D

(2)
n+1 (i.e., the last three rows of Table 8.2), the transfer matrices have a

p↔ n− p duality symmetry
U t(u, p)U−1 = f(u, p) t(u, n− p) , (8.12)

see [88, 89] for explicit expressions for the quantum-space operator U and the scalar factor f(u, p). In
particular, for p = n

2 (n even), the transfer matrix is self-dual[
U , t(u, n2 )

]
= 0 , (8.13)

2The explicit form of ∆N for N = 2 can be found in [88, 89]
3The symmetries for the “special” cases with p = 1 are the same as for p = 0, while the symmetry for D

(1)
n with p = n− 1 is

the same as for p = n. (See Table 8.2.) These observations can be readily understood from the Dynkin diagrams, see Fig. 8.1.



68 CHAPTER 8. THE SPECTRUM OF QUANTUM-GROUP-INVARIANT TRANSFER MATRICES
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Figure 8.1: Subalgebras of affine Lie algebras corresponding to removing the pth node from the extended
Dynkin diagram.
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since f(u, n2 ) = 1. For p = n
2 (n even) and ε = 1, there is an additional (“bonus”) symmetry, which leads to

even higher degeneracies for the transfer-matrix eigenvalues [88, 89].

The cases A
(2)
2n−1, B

(1)
n and D

(1)
n (for which the “right” factor in Table 8.2 is Uq(Dp)) have a “right” Z2

symmetry [
Z(r) , t(u, p)

]
= 0 ; (8.14)

and the case D
(1)
n (for which the “left” factor in Table 8.2 is Uq(Dn−p)) also has a “left” Z2 symmetry[

Z(l) , t(u, p)
]

= 0 , (8.15)

see [88] for explicit expressions for the quantum-space operators Z(r) and Z(l).

8.2 Analytical Bethe ansatz

We now proceed to determine the spectrum of the transfer matrix (7.20) for all the cases in Tables 8.2 and

8.3. The results hold for both values ε = 0, 1 except for the case D
(2)
n+1, where we consider only ε = 0. The

results for some of these cases have already been known:

• For p = 0:

– A
(2)
2n [68, 84, 85, 86]

– A
(2)
2n−1 [69, 85, 87]

– B
(1)
n , C

(1)
n , D

(1)
n [69, 85]

• For p = n:

– A
(2)
2n [84, 86]

– A
(2)
2n−1, D

(2)
n+1 [87]

• For 0 < p < n:

– A
(2)
2n [84]

The eigenvalues of the transfer matrix are determined in Secs. 8.2.1, 8.2.2, and the corresponding Bethe
equations are obtained in Sec. 8.2.3.

8.2.1 Eigenvalues of the transfer matrix

The transfer matrix and Cartan generators can be diagonalized simultaneously

t(u, p) |Λ(m1,... ,mn)〉 = Λ(m1,...,mn)(u, p) |Λ(m1,...,mn)〉 ,
∆N (H

(l)
i (p)) |Λ(m1,...,mn)〉 = h

(l)
i |Λ(m1,...,mn)〉 , i = 1, . . . , n− p ,

∆N (H
(r)
i (p)) |Λ(m1,...,mn)〉 = h

(r)
i |Λ(m1,...,mn)〉 , i = 1, . . . , p , (8.16)

as follows from (7.22) and (8.11). We focus here on determining the transfer matrix eigenvalues Λ(m1,...,mn)(u, p);

the eigenvalues of the Cartan generators h
(l)
i , h

(r)
i are determined in Sec. 8.3.1.

We take the analytical Bethe ansatz approach, whereby the eigenvalues of the transfer matrix are obtained
by “dressing” the reference-state eigenvalue. The “dressing” is assumed to be “doubled” with respect to the
corresponding closed chain. Hence, the main difficulty is to determine the reference-state eigenvalue. For the
reference state corresponding to the cases in Table 8.2, we choose 4

|0 , p〉 = v⊗Np , vp =

{
e1 for p = 0

ep for p = 1 , . . . , n
, (8.17)

where ei are d-dimensional elementary basis vectors (ei)j = δi,j . Like the usual reference state e⊗N1 , the state
(8.17) is an eigenstate of the transfer matrix with no Bethe roots (m1 = . . . = mn = 0)

t(u, p) |0 , p〉 = Λ(0,...,0)(u, p) |0 , p〉 . (8.18)

4 For the special cases in Table 8.3, we choose (see again footnote 3) the reference state |0 , 0〉 for A
(2)
2n−1, B

(1)
n , D

(1)
n with

p = 1; and the reference state |0 , n〉 for D
(1)
n with p = n− 1.
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However, in addition, this state is a highest weight of the “left” algebra

∆N (E
+(l)
i (p)) |0 , p〉 = 0 , i = 1, . . . , n− p , (8.19)

and a lowest weight of the “right” algebra

∆N (E
−(r)
i (p)) |0 , p〉 = 0 . i = 1, . . . , p . (8.20)

In view of the crossing invariance (7.23) and the known results for p = 0 [68, 69] and for D
(2)
n+1 [87], we

propose that the eigenvalues of the transfer matrix for general values of p are given by the T-Q equation

Λ(m1,...,mn)(u, p) =φ(u, p)

{
A(u) z0(u) y0(u, p) c(u)2N + Ã(u) z̃0(u) ỹ0(u, p) c̃(u)2N

+
{ n−1∑
l=1

[
zl(u) yl(u, p)Bl(u) + z̃l(u) ỹl(u, p) B̃l(u)

]
+ w1(u) yn(u, p)Bn(u)

+ w2

[
zn(u) yn(u, p)Bn(u) + z̃n(u) ỹn(u, p) B̃n(u)

]}
b(u)2N

}
. (8.21)

The overall factor φ(u, p) is given by

φ(u, p) =



(−1)ξ
(
γeu+1
γ+eu

)(
γe−u−ρ+1
γ+e−u−ρ

)
for A

(2)
2n , C

(1)
n , A

(2)
2n−1 (p 6= 1) ,

B
(1)
n (p 6= 1) , D

(1)
n (p 6= 1 , n− 1)

(−1)ξ for A
(2)
2n−1 (p = 1) , B

(1)
n (p = 1) ,

D
(1)
n (p = 1 , n− 1)

cosh(u−(n−2p)η) cosh(u−(n+2p)η)
cosh(u+(n−2p)η) cosh(u−(3n−2p)η) for D

(2)
n+1

(8.22)

where γ is defined in (7.15), and the parameters ξ and ρ are given in Table 8.1. The tilde denotes crossing

Ã(u) = A(−u−ρ), etc. The functions A(u) and Bl(u) for ĝ = A
(2)
2n , A

(2)
2n−1 (for n > 1), B

(1)
n , C

(1)
n (for n > 1),

D
(1)
n (for n > 2) are defined as

A(u) =
Q[1](u+ 2η)

Q[1](u− 2η)
,

Bl(u) =
Q[l](u− 2(l + 2)η)

Q[l](u− 2lη)

Q[l+1](u− 2(l − 1)η)

Q[l+1](u− 2(l + 1)η)
,

l = 1, ..., n− 3 for D(1)
n

l = 1, ..., n− 2 for A
(2)
2n−1 , C

(1)
n

l = 1, ..., n− 1 for A
(2)
2n , B

(1)
n . (8.23)

Moreover, for the values of l not included above:

A
(2)
2n−1 : Bn−1(u) =

Q[n−1](u− 2(n+ 1)η)

Q[n−1](u− 2(n− 1)η)

Q[n](u− 2(n− 2)η)

Q[n](u− 2nη)

× Q[n](u− 2(n− 2)η + iπ)

Q[n](u− 2nη + iπ)
, (8.24)

A
(2)
2n : Bn(u) =

Q[n](u− 2(n+ 2)η)

Q[n](u− 2nη)

Q[n](u− 2(n− 1)η + iπ)

Q[n](u− 2(n+ 1)η + iπ)
, (8.25)

B(1)
n : Bn(u) =

Q[n](u− 2(n− 2)η)

Q[n](u− 2nη)

Q[n](u− 2(n+ 1)η)

Q[n](u− 2(n− 1)η)
, (8.26)

C(1)
n : Bn−1(u) =

Q[n−1](u− 2(n+ 1)η)

Q[n−1](u− 2(n− 1)η)

Q[n](u− 2(n− 3)η)

Q[n](u− 2(n+ 1)η)
, (8.27)



8.2. ANALYTICAL BETHE ANSATZ 71

D(1)
n : Bn−2(u) =

Q[n−2](u− 2nη)

Q[n−2](u− 2(n− 2)η)

Q[n−1](u− 2(n− 3)η)

Q[n−1](u− 2(n− 1)η)

Q[n](u− 2(n− 3)η)

Q[n](u− 2(n− 1)η)
, (8.28)

Bn−1(u) =
Q[n−1](u− 2(n− 3)η)

Q[n−1](u− 2(n− 1)η)

Q[n](u− 2(n+ 1)η)

Q[n](u− 2(n− 1)η)
. (8.29)

For the values of n not included above:

A
(2)
1 : A(u) =

Q[1](u+ 2η)Q[1](u+ 2η + iπ)

Q[1](u− 2η)Q[1](u− 2η + iπ)
, (8.30)

C
(1)
1 : A(u) =

Q[1](u+ 4η)

Q[1](u− 4η)
, (8.31)

D
(1)
2 : A(u) =

Q[1](u+ 2η)

Q[1](u− 2η)

Q[2](u+ 2η)

Q[2](u− 2η)
,

B1(u) =
Q[1](u− 6η)

Q[1](u− 2η)

Q[2](u+ 2η)

Q[2](u− 2η)
. (8.32)

Finally, for D
(2)
n+1:

A(u) =
Q[1](u+ η)

Q[1](u− η)

Q[1](u+ η + iπ)

Q[1](u− η + iπ)
,

Bl(u) =
Q[l](u− (l + 2)η)

Q[l](u− lη)

Q[l](u− (l + 2)η + iπ)

Q[l](u− lη + iπ)

× Q[l+1](u− (l − 1)η)

Q[l+1](u− (l + 1)η)

Q[l+1](u− (l − 1)η + iπ)

Q[l+1](u− (l + 1)η + iπ)
, l = 1, ..., n− 1,

Bn(u) =
Q[n](u− (n+ 2)η)

Q[n](u− nη)

Q[n](u− (n− 2)η + iπ)

Q[n](u− nη + iπ)
. (8.33)

In the above equations (8.23) - (8.33) for the functions A(u) and Bl(u), the functions Q[l](u) are given by

Q[l](u) =

ml∏
j=1

sinh
(

1
2 (u− u[l]

j )
)

sinh
(

1
2 (u+ u

[l]
j )
)
, Q[l](−u) = Q[l](u) , (8.34)

where the zeros u
[l]
j (and their number ml) are still to be determined. Note that these expressions for A(u)

and Bl(u) are “doubled” with respect to those in [94] for the corresponding closed chains.

The functions c(u) and b(u) are given by

c(u) =


2 sinh

(
u
2 − 2η

)
cosh

(
u
2 − κη

)
for A

(2)
2n , A

(2)
2n−1 ,

2 sinh
(
u
2 − 2η

)
sinh

(
u
2 − κη

)
for B

(1)
n , C

(1)
n , D

(1)
n ,

4 sinh (u− 2η) sinh (u− κη) for D
(2)
n+1 ,

(8.35)

and

b(u) =


2 sinh

(
u
2

)
cosh

(
u
2 − κη

)
for A

(2)
2n , A

(2)
2n−1 ,

2 sinh
(
u
2

)
sinh

(
u
2 − κη

)
for B

(1)
n , C

(1)
n , D

(1)
n ,

4 sinh (u) sinh (u− κη) for D
(2)
n+1 .

(8.36)

For all ĝ except D
(2)
n+1, the functions zl(u) are given by

zl(u) =
sinhu sinh(u− 2κη) cosh

(
u− ωη + (2− δ) iπ4

)
sinh(u− 2lη) sinh (u− 2(l + 1)η) cosh

(
u− κη + (2− δ) iπ4

) , (8.37)

where ω and δ are given in Table 8.1. For D
(2)
n+1

zl(u) =

{
cosh(u−(n−1)η) sinh(2u−4nη) sinh(u−(n+1)η) sinh(2u)
sinh(u−nη) cosh(u−nη) sinh(2u−2lη) sinh(2u−2(l+1)η) l = 0, ..., n− 1 ,

zn−1(u) sinh(u−(n−1)η)
sinh(u−(n+1)η) l = n .

(8.38)
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Finally, the quantities w1(u) and w2 are defined as

w1(u) =

{
sinhu sinh(u−2κη)

sinh(u−(κ+1)η) sinh(u−(κ−1)η) for A
(2)
2n , B

(1)
n ,

0 for A
(2)
2n−1 , C

(1)
n , D

(1)
n , D

(2)
n+1 ,

w2 =

{
1 for D

(2)
n+1

0 otherwise
. (8.39)

In the expression (8.21) for the transfer-matrix eigenvalue, only the functions yl(u, p) remain to be spec-
ified. For yl(u, p) = 1, the expression (8.21) reduces (apart from the overall factor) to the transfer-matrix

eigenvalue for the case p = 0 for all the cases except D
(2)
n+1 [68, 69]. The functions yl(u, p) for general values

of p are determined in the following section.

8.2.2 Determining yl(u, p)

We now proceed to determine the functions y0(u, p) , . . . , yn(u, p) for general values of p. We emphasize that
these are the only functions (besides the overall factor φ(u, p) (8.22), through the quantity γ (7.15)) in the
expression (8.21) for the transfer-matrix eigenvalue with explicit dependence on p.

For the special cases in Table 8.3, the functions yl(u, p) are simply given by

yl(u, p) = 1 , l = 0 , . . . , n , (8.40)

i.e., the same as for the case p = 0. We therefore focus our attention in the remainder of this section on the
cases in Table 8.2.

We make the ansatz

yl(u, p) =

{
F (u) for 0 ≤ l ≤ p− 1

G(u) for p ≤ l ≤ n , (8.41)

and

G̃(u) ≡ G(−u− ρ) = G(u) , (8.42)

which guarantees that the only Bethe equation with an extra factor (in comparison with the case p = 0) is

the equation for the pth Bethe roots {u[p]
j }, as discussed further in Sec. 8.2.3.

The explicit form of F (u) and G(u) are

G(u) =
cosh

(
u
2 −

ωη
2 − (δ − 4ε) iπ8

)
cosh

(
u
2 −

ω̄η
2 − (δ − 4ε) iπ8

)
cosh

(
u
2 −

(ω−4p)η
2 − (δ − 4ε) iπ8

)
cosh

(
u
2 −

(ω̄+4p)η
2 − (δ − 4ε) iπ8

) , (8.43)

F (u) =
cosh2

(
u
2 + (ω−4p)η

2 + (δ − 4ε) iπ8

)
cosh2

(
u
2 −

ωη
2 − (δ − 4ε) iπ8

) G(u) , (8.44)

for ĝ = A
(2)
2n , A

(2)
2n−1, B

(1)
n , C

(1)
n , D

(1)
n . Note that ω , ω̄ , δ are given in Table 8.1. Moreover,

G(u) =
cosh2(u− nη)

cosh(u− (n− 2p)η) cosh(u− (n+ 2p)η)
, (8.45)

F (u) =
cosh2 (u+ (n− 2p)η)

cosh2 (u− nη)
G(u) , (8.46)

for ĝ = D
(2)
n+1. Note that G(u) = 1 for p = 0 in all cases. The rest of this section is dedicated to explaining

how the above expressions can be obtained, starting with F (u).
According to (8.41), y0(u, p) is equal to F (u) for any value of p except p = 0. We can use this fact to

determine F (u) by arranging to kill all the terms in (8.21) except the one with y0(u, p), which can be accom-
plished by judiciously introducing inhomogeneities. Indeed, it is well known that arbitrary inhomogeneities
{θi} can be introduced in the transfer matrix t(u, p ; {θi}) while maintaining the commutativity property

[t(u, p ; {θi}) , t(v, p ; {θi})] = 0 . (8.47)

By appropriately choosing the inhomogeneities, all the terms in (8.21) except the first one can be made to
vanish. A similar procedure has been used in e.g. [87, 74].
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As an example, let us consider the case A
(2)
2n . The only effect on the eigenvalue (8.21) of introducing

inhomogeneities {θi} in the transfer matrix is to modify the expressions for c(u), c̃(u) and b(u) (8.35), (8.36)
as follows:

c(u)2N =
[
2 sinh

(u
2
− 2η

)
cosh

(u
2
− κη

)]2N
7−→

N∏
i=1

[
2 sinh

(
u+ θi

2
− 2η

)
cosh

(
u+ θi

2
− κη

)][
2 sinh

(
u− θi

2
− 2η

)
cosh

(
u− θi

2
− κη

)]
, (8.48)

c̃(u)2N =
[
2 sinh

(u
2

)
cosh

(u
2
− (κ− 2) η

)]2N
7−→

N∏
i=1

[
2 sinh

(
u+ θi

2

)
cosh

(
u+ θi

2
− (κ− 2) η

)][
2 sinh

(
u− θi

2

)
cosh

(
u− θi

2
− (κ− 2) η

)]
, (8.49)

b(u)2N =
[
2 sinh

(u
2

)
cosh

(u
2
− κη

)]2N
7−→

N∏
i=1

[
2 sinh

(
u+ θi

2

)
cosh

(
u+ θi

2
− κ η

)][
2 sinh

(
u− θi

2

)
cosh

(
u− θi

2
− κ η

)]
. (8.50)

By choosing θi = u, the modified expressions for c̃(u) and b(u) (but not c(u)) evidently become zero; hence,
the only term in (8.21) that survives is the first term, which is proportional to y0(u, p) = F (u). On the other
hand, by acting with the transfer matrix t(u, p ; {θi = u}) with N = 1 and n = p = 1 on the reference state
(8.17), we explicitly obtain the corresponding eigenvalue. Comparing these two results, keeping in mind that
the reference state is the Bethe state with no Bethe roots and therefore A(u) = 1, we can solve for F (u). By
repeating this procedure for n = 2 and p = 1, 2, we infer the general result (8.44), which can then be easily
checked in a similar way for higher values of n, p,N .

In order to determine G(u), we return to the homogeneous case θi = 0, so that all the functions
y0(u, p), . . . , yn(u, p) again appear in (8.21). Using (8.21), the ansätze (8.41) and (8.42), and the result
(8.44) for F (u), we obtain an expression for the reference-state eigenvalue (A(u) = Bl(u) = 1) in terms of
G(u). We also calculate this eigenvalue explicitly by acting with t(u, p) (with N = 1) on the reference state
(8.17). By comparing both expressions, we can solve for G(u). We again use the results for small values of
n and p to infer the general result (8.43). Having obtained both F (u) and G(u) for general values of n and
p, the reference-state eigenvalue can be easily checked for higher values of n, p,N .

Using the same procedure for the other ĝ in Table 8.2, we arrive at the results (8.43) - (8.46). As already
noted, for the special cases in Table 8.3, we have yl(u, p) = 1 (8.40).

8.2.3 Bethe equations

The expression (8.21) for the transfer-matrix eigenvalues is in terms of the zeros u
[l]
j of the functions Q[l](u),

which are still to be determined. In principle, these zeros can be determined by solving corresponding Bethe
equations, which we now present. We find that these Bethe equations are the same as for the case p = 0
[68, 69], except for the presence of an extra factor Φl,p,n(u) (8.76), (8.83) that is different from 1 only if l = p.
The only dependence on p in the Bethe equations is in this factor.

For ĝ = A
(2)
2n , A

(2)
2n−1 , B

(1)
n , C

(1)
n , D

(1)
n

We determine the Bethe equations from the requirement that the expression (8.21) for the transfer-matrix
eigenvalues have vanishing residues at the poles. In this way, we obtain the following Bethe equations for all

the cases in Tables 8.2 and 8.3 except for D
(2)
n+1:

 sinh

(
u

[1]
k

2 + η

)
sinh

(
u

[1]
k

2 − η
)


2N

Φ1,p,n(u
[1]
k ) =

Q
[1]
k

(
u

[1]
k + 4η

)
Q

[1]
k

(
u

[1]
k − 4η

) Q[2]
(
u

[1]
k − 2η

)
Q[2]

(
u

[1]
k + 2η

) , k = 1, . . . ,m1 , (8.51)
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Φl,p,n(u
[l]
k ) =

Q[l−1]
(
u

[l]
k − 2η

)
Q[l−1]

(
u

[l]
k + 2η

) Q[l]
k

(
u

[l]
k + 4η

)
Q

[l]
k

(
u

[l]
k − 4η

) Q[l+1]
(
u

[l]
k − 2η

)
Q[l+1]

(
u

[l]
k + 2η

) , k = 1, . . . ,ml , (8.52)

l = 1, ..., n− 3 for D(1)
n (n > 2)

l = 1, ..., n− 2 for C(1)
n (n > 1), A

(2)
2n−1 (n > 1)

l = 1, ..., n− 1 for A
(2)
2n , B

(1)
n ,

where Q[l](u) is given by (8.34), and Q
[l]
k (u) is defined by

Q
[l]
k (u) =

ml∏
j=1,j 6=k

sinh
(

1
2 (u− u[l]

j )
)

sinh
(

1
2 (u+ u

[l]
j )
)
. (8.53)

Moreover, for the values of l not included above:

A
(2)
2n−1 : Φn−1,p,n(u

[n−1]
k ) =

Q[n−2]
(
u

[n−1]
k − 2η

)
Q[n−2]

(
u

[n−1]
k + 2η

) Q[n−1]
k

(
u

[n−1]
k + 4η

)
Q

[n−1]
k

(
u

[n−1]
k − 4η

)
×
Q[n]

(
u

[n−1]
k − 2η

)
Q[n]

(
u

[n−1]
k + 2η

) Q[n]
(
u

[n−1]
k − 2η + iπ

)
Q[n]

(
u

[n−1]
k + 2η + iπ

) , (8.54)

Φn,p,n(u
[n]
k ) =

Q[n−1]
(
u

[n]
k − 2η

)
Q[n−1]

(
u

[n]
k + 2η

) Q[n−1]
(
u

[n]
k − 2η + iπ

)
Q[n−1]

(
u

[n]
k + 2η + iπ

)
×
Q

[n]
k

(
u

[n]
k + 4η

)
Q

[n]
k

(
u

[n]
k − 4η

) Q[n]
k

(
u

[n]
k + 4η + iπ

)
Q

[n]
k

(
u

[n]
k − 4η + iπ

) , (8.55)

A
(2)
2n : Φn,p,n(u

[n]
k ) =

Q[n−1]
(
u

[n]
k − 2η

)
Q[n−1]

(
u

[n]
k + 2η

) Q[n]
k

(
u

[n]
k + 4η

)
Q

[n]
k

(
u

[n]
k − 4η

) Q[n]
k

(
u

[n]
k − 2η + iπ

)
Q

[n]
k

(
u

[n]
k + 2η + iπ

) , (8.56)

B(1)
n : Φn,p,n(u

[n]
k ) =

Q[n−1]
(
u

[n]
k − 2η

)
Q[n−1]

(
u

[n]
k + 2η

) Q[n]
k

(
u

[n]
k + 2η

)
Q

[n]
k

(
u

[n]
k − 2η

) , (8.57)

C(1)
n : Φn−1,p,n(u

[n−1]
k ) =

Q[n−2]
(
u

[n−1]
k − 2η

)
Q[n−2]

(
u

[n−1]
k + 2η

) Q[n−1]
k

(
u

[n−1]
k + 4η

)
Q

[n−1]
k

(
u

[n−1]
k − 4η

) Q[n]
(
u

[n−1]
k − 4η

)
Q[n]

(
u

[n−1]
k + 4η

) , (8.58)

Φn,p,n(u
[n]
k ) =

Q[n−1]
(
u

[n]
k − 4η

)
Q[n−1]

(
u

[n]
k + 4η

) Q[n]
k

(
u

[n]
k + 8η

)
Q

[n]
k

(
u

[n]
k − 8η

) , (8.59)

D(1)
n : Φn−2,p,n(u

[n−2]
k ) =

Q[n−3]
(
u

[n−2]
k − 2η

)
Q[n−3]

(
u

[n−2]
k + 2η

) Q[n−2]
k

(
u

[n−2]
k + 4η

)
Q

[n−2]
k

(
u

[n−2]
k − 4η

)
×
Q[n−1]

(
u

[n−2]
k − 2η

)
Q[n−1]

(
u

[n−2]
k + 2η

) Q[n]
(
u

[n−2]
k − 2η

)
Q[n]

(
u

[n−2]
k + 2η

) , (8.60)

Φn−1,p,n(u
[n−1]
k ) =

Q[n−2]
(
u

[n−1]
k − 2η

)
Q[n−2]

(
u

[n−1]
k + 2η

) Q[n−1]
k

(
u

[n−1]
k + 4η

)
Q

[n−1]
k

(
u

[n−1]
k − 4η

) , (8.61)

Φn,p,n(u
[n]
k ) =

Q[n−2]
(
u

[n]
k − 2η

)
Q[n−2]

(
u

[n]
k + 2η

) Q[n]
k

(
u

[n]
k + 4η

)
Q

[n]
k

(
u

[n]
k − 4η

) . (8.62)
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The Bethe equations for values of n not included above:

A
(2)
1 :

 sinh(
u

[1]
k

2 + 2η)

sinh(
u

[1]
k

2 − 2η)

2N

Φ1,p,1(u
[1]
k ) =

Q
[1]
k

(
u

[1]
k + 4η

)
Q

[1]
k

(
u

[1]
k − 4η

) Q[1]
k

(
u

[1]
k + 4η + iπ

)
Q

[1]
k

(
u

[1]
k − 4η + iπ

) , (8.63)

A
(2)
3 :

 sinh(
u

[1]
k

2 + η)

sinh(
u

[1]
k

2 − η)

2N

Φ1,p,2(u
[1]
k ) =

Q
[1]
k

(
u

[1]
k + 4η

)
Q

[1]
k

(
u

[1]
k − 4η

) Q[2]
(
u

[1]
k − 2η

)
Q[2]

(
u

[1]
k + 2η

) Q[2]
(
u

[1]
k − 2η + iπ

)
Q[2]

(
u

[1]
k + 2η + iπ

) ,
Φ2,p,2(u

[2]
k ) =

Q[1]
(
u

[2]
k − 2η

)
Q[1]

(
u

[2]
k + 2η

) Q[1]
(
u

[2]
k − 2η + iπ

)
Q[1]

(
u

[2]
k + 2η + iπ

)
×
Q

[2]
k

(
u

[2]
k + 4η

)
Q

[2]
k

(
u

[2]
k − 4η

) Q[2]
k

(
u

[2]
k + 4η + iπ

)
Q

[2]
k

(
u

[2]
k − 4η + iπ

) , (8.64)

A
(2)
2 :

 sinh(
u

[1]
k

2 + η)

sinh(
u

[1]
k

2 − η)

2N

Φ1,p,1(u
[1]
k ) =

Q
[1]
k

(
u

[1]
k + 4η

)
Q

[1]
k

(
u

[1]
k − 4η

) Q[1]
k

(
u

[1]
k − 2η + iπ

)
Q

[1]
k

(
u

[1]
k + 2η + iπ

) , (8.65)

B
(1)
1 :

 sinh(
u

[1]
k

2 + η)

sinh(
u

[1]
k

2 − η)

2N

Φ1,p,1(u
[1]
k ) =

Q
[1]
k

(
u

[1]
k + 2η

)
Q

[1]
k

(
u

[1]
k − 2η

) , (8.66)

C
(1)
1 :

 sinh(
u

[1]
k

2 + 2η)

sinh(
u

[1]
k

2 − 2η)

2N

Φ1,p,1(u
[1]
k ) =

Q
[1]
k

(
u

[1]
k + 8η

)
Q

[1]
k

(
u

[1]
k − 8η

) , (8.67)

C
(1)
2 :

 sinh(
u

[1]
k

2 + η)

sinh(
u

[1]
k

2 − η)

2N

Φ1,p,2(u
[1]
k ) =

Q
[1]
k

(
u

[1]
k + 4η

)
Q

[1]
k

(
u

[1]
k − 4η

) Q[2]
(
u

[1]
k − 4η

)
Q[2]

(
u

[1]
k + 4η

) , (8.68)

Φ2,p,2(u
[2]
k ) =

Q[1]
(
u

[2]
k − 4η

)
Q[1]

(
u

[2]
k + 4η

) Q[2]
k

(
u

[2]
k + 8η

)
Q

[2]
k

(
u

[2]
k − 8η

) , (8.69)

D
(1)
2 :

 sinh(
u

[1]
k

2 + η)

sinh(
u

[1]
k

2 − η)

2N

Φ1,p,2(u
[1]
k ) =

Q
[1]
k

(
u

[1]
k + 4η

)
Q

[1]
k

(
u

[1]
k − 4η

) , (8.70)

 sinh(
u

[2]
k

2 + η)

sinh(
u

[2]
k

2 − η)

2N

Φ2,p,2(u
[2]
k ) =

Q
[2]
k

(
u

[2]
k + 4η

)
Q

[2]
k

(
u

[2]
k − 4η

) , (8.71)

D
(1)
3 :

 sinh(
u

[1]
k

2 + η)

sinh(
u

[1]
k

2 − η)

2N

Φ1,p,3(u
[1]
k ) =

Q
[1]
k

(
u

[1]
k + 4η

)
Q

[1]
k

(
u

[1]
k − 4η

) Q[2]
(
u

[1]
k − 2η

)
Q[2]

(
u

[1]
k + 2η

)
×
Q[3]

(
u

[1]
k − 2η

)
Q[3]

(
u

[1]
k + 2η

) , (8.72)

Φ2,p,3(u
[2]
k ) =

Q[1]
(
u

[2]
k − 2η

)
Q[1]

(
u

[2]
k + 2η

) Q[2]
k

(
u

[2]
k + 4η

)
Q

[2]
k

(
u

[2]
k − 4η

) , (8.73)

Φ3,p,3(u
[3]
k ) =

Q
[1]
k

(
u

[3]
k − 2η

)
Q

[1]
k

(
u

[3]
k + 2η

) Q[3]
k

(
u

[3]
k + 4η

)
Q

[3]
k

(
u

[3]
k − 4η

) . (8.74)
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The u
[1]
k ↔ u

[2]
k symmetry of the Bethe equations (8.70), (8.71) is a reflection of the Uq (D2) symmetry (see

again Table 8.2) and the fact D2 = A1 ⊗A1.

The important factor Φl,p,n(u) in the Bethe equations for most of the cases in Table 8.2 is given by 5

Φl,p,n(u) =
yl(u+ 2lη, p)

yl−1(u+ 2lη, p)
=

{
G(u+2pη)
F (u+2pη) for l = p

1 for l 6= p
, (8.75)

where the second equality follows from (8.41). Using the expressions for G(u) (8.43) and F (u) (8.44), we
conclude that Φl,p,n(u) is given by

Φl,p,n(u) =



[
cosh(u2−δl,p(

(ω−2p)
2 η+ iπ

8 (δ−4ε)))
cosh(u2 +δl,p( (ω−2p)

2 η+ iπ
8 (δ−4ε)))

]2

for B
(1)
n , C

(1)
n , D

(1)
n , A

(2)
2n

and for A
(2)
2n−1 with l < n ,

[
sinh(u−δl,p((ω−2p)η+ iπ

4 (δ−4ε)))
sinh(u+δl,p((ω−2p)η+ iπ

4 (δ−4ε)))

]2

for A
(2)
2n−1 with l = n .

(8.76)

Note that Φl,p,n(u) is different from 1 only if l = p. That is, the Bethe equations are the same as for the case

p = 0 [68, 69], except for an extra factor in the equation for the pth Bethe roots {u[p]
j }.

The factor Φl,p,n(u) for all the special cases in Table 8.3 is simply given by

Φl,p,n(u) = 1 , (8.77)

as follows from (8.40).

For p = n, the Bethe equations for A
(2)
2n with ε = 1 reduce to those found in [86]; and (again for p = n)

the Bethe equations for A
(2)
2n−1 with ε = 0 reduce to those found in [87]. We have numerically verified the

completeness of all the above Bethe ansatz solutions for small values of n and N (for all p = 0, . . . , n and
ε = 0, 1), along the lines in [86, 87].

For ĝ = D
(2)
n+1

We emphasize that, for D
(2)
n+1, we consider only the case ε = 0. We obtain the following Bethe equations:

For n = 1 with p = 0, 1:

[
sinh(u

[1]
k + η)

sinh(u
[1]
k − η)

]2N

=
Q

[1]
k

(
u

[1]
k + 2η

)
Q

[1]
k

(
u

[1]
k − 2η

) , k = 1, . . . ,m1 . (8.78)

For n > 1 with p = 0, . . . , n:

[
sinh(u

[1]
k + η)

sinh(u
[1]
k − η)

]2N

Φ1,p,n(u
[1]
k ) =

Q
[1]
k

(
u

[1]
k + 2η

)
Q

[1]
k

(
u

[1]
k − 2η

) Q[1]
k

(
u

[1]
k + 2η + iπ

)
Q

[1]
k

(
u

[1]
k − 2η + iπ

)
×
Q[2]

(
u

[1]
k − η

)
Q[2]

(
u

[1]
k + η

) Q[2]
(
u

[1]
k − η + iπ

)
Q[2]

(
u

[1]
k + η + iπ

) ,
k = 1, . . . ,m1 , (8.79)

5The exceptions are as follows:

A
(2)
2n−1 , p = n : Φl,p,n(u) =

{
ỹn−1(u+2nη,p)

yn−1(u+2nη,p)
for l = n

1 for l 6= n
,

C
(1)
n , p = n : Φl,p,n(u) =

{
ỹn−1(u+2(n+1)η,p)

yn−1(u+2(n+1)η,p)
for l = n

1 for l 6= n
,

D
(1)
n , p = n : Φl,p,n(u) =

{
yn−1(u+2(n−1)η,p)

yn−2(u+2(n−1)η,p)
for l = n

1 for l 6= n
.
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Φl,p,n(u
[l]
k ) =

Q[l−1]
(
u

[l]
k − η

)
Q[l−1]

(
u

[l]
k + η

) Q[l−1]
(
u

[l]
k − η + iπ

)
Q[l−1]

(
u

[l]
k + η + iπ

)
×
Q

[l]
k

(
u

[l]
k + 2η

)
Q

[l]
k

(
u

[l]
k − 2η

) Q[l]
k

(
u

[l]
k + 2η + iπ

)
Q

[l]
k

(
u

[l]
k − 2η + iπ

)
×
Q[l+1]

(
u

[l]
k − η

)
Q[l+1]

(
u

[l]
k + η

) Q[l+1]
(
u

[l]
k − η + iπ

)
Q[l+1]

(
u

[l]
k + η + iπ

) ,
k = 1, . . . ,ml , l = 2, . . . , n− 1 , (8.80)

Φn,p,n(u
[n]
k ) =

Q[n−1]
(
u

[n]
k − η

)
Q[n−1]

(
u

[n]
k + η

) Q[n−1]
(
u

[n]
k − η + iπ

)
Q[n−1]

(
u

[n]
k + η + iπ

) Q[n]
k

(
u

[n]
k + 2η

)
Q

[n]
k

(
u

[n]
k − 2η

) ,
k = 1, . . . ,mn . (8.81)

The factor Φl,p,n(u) in the above Bethe equations is given by

Φl,p,n(u) =
yl(u+ lη, p)

yl−1(u+ lη, p)
=

{
G(u+pη)
F (u+pη) for l = p

1 for l 6= p
. (8.82)

Using the results for G(u) (8.45) and F (u) (8.46), we obtain

Φl,p,n(u) =

[
cosh (u− δl,p(n− p)η)

cosh (u+ δl,p(n− p)η)

]2

. (8.83)

As for (8.76), this factor Φl,p,n(u) is different from 1 only if l = p.
For p = n, these Bethe equations reduce to the one found in [87]. We have numerically verified the

completeness of the above Bethe ansatz solutions for small values of n and N (for all p = 0, . . . , n) along the
lines in [87].

Towards a universal formula for the Bethe equations

Let us denote in this subsection the affine Lie algebras ĝ in Tables 8.2 and 8.3 by g(t), where g is a (non-affine)
Lie algebra with rank r, and t = 1 (untwisted) or t = 2 (twisted).6 The above formulas for the g(t) Bethe
equations can be rewritten in a more compact form in terms of representation-theoretic quantities following
[94]:7

t−1∏
s=0

 sinh

(
u

[l]
k

2 + (λ1, θ
sαl) η + iπs

2

)
sinh

(
u

[l]
k

2 − (λ1, θsαl) η + iπs
2

)


2N

Φl,p,n(u
[l]
k )

=

t−1∏
s=0

n∏
l′=1

ml′∏′

j=1

sinh
[

1
2

(
u

[l]
k − u

[l′]
j

)
+ (αl, θ

sαl′) η + iπs
2

]
sinh

[
1
2

(
u

[l]
k − u

[l′]
j

)
− (αl, θsαl′) η + iπs

2

] sinh
[

1
2

(
u

[l]
k + u

[l′]
j

)
+ (αl, θ

sαl′) η + iπs
2

]
sinh

[
1
2

(
u

[l]
k + u

[l′]
j

)
− (αl, θsαl′) η + iπs

2

] ,
k = 1, . . . ,ml , l = 1, . . . , n , (8.84)

where the product over j has the restriction (j, l′) 6= (k, l). The simple roots αi of g are given in the orthogonal
basis by

αi = ei − ei+1, i = 1, ..., r− 1 ,

αr =


er − er+1 for Ar

er for Br

2er for Cr

er−1 + er for Dr

, (8.85)

6 The notation g(t) introduced here for affine Lie algebras should not be confused with the “left” and “right” algebras g(l)

and g(r) introduced in Sec. 8.1.3.
7For D

(2)
n+1, a rescaling η → η

2
in (8.84) is necessary in order to match with the Bethe equations as written in Sec. 8.2.3.
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where ei are r-dimensional elementary basis vectors (except for Ar, in which case the dimension is r + 1).
The notation (∗ , ∗) denotes the ordinary scalar product, and λ1 is the first fundamental weight of g, with
(λ1 , αi) = δi,1. For the twisted cases g(2), the order-2 automorphisms θ of g are given by

θαi = α2n−i , i = 1, . . . , 2n− 1 for A
(2)
2n−1 ,

θαi = α2n+1−i , i = 1, . . . , 2n for A
(2)
2n ,

θαi = αi , i = 1, . . . , n− 1 , θαn = αn+1 for D
(2)
n+1 . (8.86)

The factor Φl,p,n(u) in (8.84) is understood to be the appropriate one for g(t), see (8.76), (8.77), (8.83). It
would be interesting to also have a universal expression for this factor.

8.3 Dynkin labels of the Bethe states

In this section we obtain formulas for the Dynkin labels of the Bethe states in terms of the numbers of Bethe
roots of each type. Since the Dynkin labels of an irrep determine its dimension, these formulas help determine
the degeneracies of the transfer-matrix eigenvalues.

8.3.1 Eigenvalues of the Cartan generators

We now argue that the eigenvalues of the Cartan generators for the Bethe states (8.16) are given in terms of
the cardinalities of the Bethe roots of each type by

h
(l)
i = mp+i−1 −mp+i − ξ δi,n−pmn − ξ′ δi,n−p−1mn , i = 1, ..., n− p ,

h
(r)
i = mi −mi−1 + ξ δi,nmn + ξ′ δi,n−1mn , i = 1, ..., p , (8.87)

where ξ and ξ′ are given in Table 8.1.
The first step is to compute the asymptotic behavior of Λ(m1,...,mn)(u, p) by computing the expectation

value
〈Λ(m1,...,mn)|t(u, p)|Λ(m1,...,mn)〉 (8.88)

for u→∞. The main idea is to perform a gauge transformation to the “unitary” gauge [88, 89], so that the
asymptotic limit of the monodromy matrices in t(u, p) become expressed in terms of the QG generators. We
assume that the Bethe states |Λ(m1,... ,mn)〉 are highest-weight states of the “left” algebra

∆N (E
+(l)
i (p)) |Λ(m1,...,mn)〉 = 0 , i = 1, . . . , n− p , (8.89)

and lowest-weight states of the “right” algebra

∆N (E
−(r)
i (p)) |Λ(m1,...,mn)〉 = 0 , i = 1, . . . , p , (8.90)

as is the reference state (8.19), (8.20). We eventually obtain

Λ(m1,...,mn)(u, p) ∼ σ(u) e−2κ η N

{
d− 2n+

p∑
j=1

[
f(r)e4η(−j+h(r)

p+1−j) +
1

f(r)
e−4η(−j+h(r)

p+1−j)

]

+

n∑
j=p+1

[
f(l)e−4η(n−j+h(l)

j−p) +
1

f(l)
e4η(n−j+h(l)

j−p)

]}
for u→∞ , (8.91)

where

σ(u) =

{
2−2Ne2Nu for A

(2)
2n−1 , A

(2)
2n , B

(1)
n , C

(1)
n , D

(1)
n

e4Nu for D
(2)
n+1

, (8.92)

and

f(r) =


−1 for A

(2)
2n , C

(1)
n

e4η for A
(2)
2n−1 , B

(1)
n , D

(1)
n

e2η for D
(2)
n+1

, (8.93)

f(l) =


e−2η for A

(2)
2n , B

(1)
n , D

(2)
n+1

−e−4η for A
(2)
2n−1 , C

(1)
n

1 for D
(1)
n

. (8.94)
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Note that the result (8.91) is in terms of the eigenvalues of the Cartan generators for the Bethe states.
The second step is to compute again the asymptotic behavior of Λ(m1,...,mn)(u, p), but now using instead

the T-Q equation (8.21). We obtain in this way

Λ(m1,...,mn)(u, p) ∼ σ(u) e−2κ η N

{
d− 2n+

n−1∑
l=0

[
gle

4η(l−n+ml+1−ml+ξδl,n−1mn+ξ′δl,n−2mn)

+
1

gl
e−4η(l−n+ml+1−ml+ξδl,n−1mn+ξ′δl,n−2mn)

]}
for u→∞ , (8.95)

where

gl =

{
f(r)e4η(n−p) l ≤ p− 1

f(l)e4η l ≥ p , (8.96)

σ(u) is given by (8.92), and f(r), f(l) are given by (8.94). Moreover, we define m0 as

m0 = N . (8.97)

Note that the result (8.95) is in terms of the cardinalities of the Bethe roots of each type.
Finally, by comparing (8.91) and (8.95), we obtain the desired result (8.87).

8.3.2 Formulas for the Dynkin labels

The “left” Dynkin labels are expressed in terms of the eigenvalues of the “left” Cartan generators by (see,
e.g. [86, 87])

a
(l)
i = h

(l)
i − h

(l)
i+1, i = 1, ..., n− p− 1 ,

a
(l)
n−p =


2h

(l)
n−p for g(l) = Bn−p i.e., for A

(2)
2n , B

(1)
n , D

(2)
n+1

h
(l)
n−p for g(l) = Cn−p i.e., for A

(2)
2n−1 , C

(1)
n

h
(l)
n−p−1 + h

(l)
n−p for g(l) = Dn−p i.e., for D

(1)
n

. (8.98)

Similarly, the “right” Dynkin labels are expressed in terms of the eigenvalues of the “right” Cartan generators
by

a
(r)
i = −h(r)

i + h
(r)
i+1 i = 1, ..., p− 1 ,

a(r)
p =


−2h

(r)
p for g(r) = Bp i.e., for D

(2)
n+1

−h(r)
p for g(r) = Cp i.e., for A

(2)
2n , C

(1)
n

−h(r)
p−1 − h

(r)
p for g(r) = Dp i.e., for A

(2)
2n−1 , B

(1)
n , D

(1)
n

. (8.99)

We introduce extra minus signs in (8.99) (in comparison with corresponding formulas in (8.98)) since the
Bethe states are lowest weights of the “right” algebra (8.90). The algebras g(l) and g(r) for the various affine
algebras ĝ are given in Table 8.2.

Finally, using the results (8.87) for the eigenvalues of the Cartan generators in terms of the cardinalities
of the Bethe roots of each type, we obtain formulas for the Dynkin labels in terms of the cardinalities of the
Bethe roots. Explicitly, for the “left” Dynkin labels (p = 0, 1, . . . , n− 1):

a
(l)
i = mp+i−1 − 2mp+i +mp+i+1 , (8.100)

i = 1, ..., n− p− 1 for A
(2)
2n , B

(1)
n , D

(2)
n+1 ,

i = 1, ..., n− p− 2 for A
(2)
2n−1 , C

(1)
n ,

i = 1, ..., n− p− 3 for D(1)
n .

Moreover, for the values of i not included above:

A
(2)
2n , B

(1)
n , D

(2)
n+1 : a

(l)
n−p = 2mn−1 − 2mn , (8.101)

A
(2)
2n−1, C

(1)
n : a

(l)
n−p−1 = mn−2 − 2mn−1 + 2mn ,

a
(l)
n−p = mn−1 − 2mn , (8.102)

D(1)
n : a

(l)
n−p−2 = mn−3 − 2mn−2 +mn−1 +mn ,

a
(l)
n−p−1 = mn−2 − 2mn−1 ,

a
(l)
n−p = mn−2 − 2mn . (8.103)
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For the “right” Dynkin labels (p = 1, . . . , n):

a
(r)
i = mi−1 − 2mi +mi+1 , (8.104)

i = 1, ..., p− 1 for A
(2)
2n , B

(1)
n , D

(2)
n+1 ,

i = 1, ..., p− 2 for A
(2)
2n−1 , C

(1)
n

i = 1, ..., p− 3 for D(1)
n .

Moreover, for the values of i not included above:

A
(2)
2n : a(r)

p = mp−1 −mp , (8.105)

B(1)
n : a(r)

p = mp−2 −mp , (8.106)

A
(2)
2n−1 : a

(r)
p−1 = mp−2 − 2mp−1 + (1 + δp,n)mp ,

a(r)
p = mp−2 − (1 + δp,n)mp , (8.107)

C(1)
n : a

(r)
p−1 = mp−2 − 2mp−1 + (1 + δp,n)mp ,

a(r)
p = mp−1 − (1 + δp,n)mp , (8.108)

D(1)
n a

(r)
p−2 = mp−3 − 2mp−2 +mp−1 + δp,nmp ,

a
(r)
p−1 = mp−2 − 2mp−1 +mp + (δp,n−1 − δp,n)mn ,

a(r)
p = mp−2 −mp − (δp,n−1 + δp,n)mp , (8.109)

D
(2)
n+1 : a(r)

p = 2mp−1 − 2mp . (8.110)

We remind the reader that m0 is defined in (8.97).

For the cases of overlap with previous results (namely, A
(2)
2n with p = 0, n [86]; A

(2)
2n−1 with p = 0, n [87];

and D
(2)
n+1 with p = n [87]), the results match.

8.3.3 Examples

We now illustrate the results of Sec. 8.3.2 with two simple examples.

A
(2)
2n with n = 3

As a first example, we consider the case A
(2)
2n with n = 3, two sites (N = 2), and either ε = 0 or ε = 1. The

four possibilities p = 0, 1, 2, 3 are summarized in Table 8.4. By solving the Bethe equations (see Sec. 8.2.3)
with a generic value of anisotropy η, we obtain solutions (not shown8) with the values of m1,m2,m3 displayed
in the table. The corresponding Dynkin labels obtained using the formulas from Sec. 8.3.2, are also displayed
in the table. Finally, the irreducible representations of the “left” and “right” algebras corresponding to these
Dynkin labels (obtained e.g. using LieART [96]) are shown in the final column. By explicit diagonalization of
the transfer matrix, we confirm that the degeneracies of the eigenvalues exactly match with the dimensions
of the corresponding irreps.

D
(1)
n with n = 4

As a second example, we consider the case D
(1)
n with n = 4, two sites (N = 2), and with ε = 0. The three

cases p = 0, 2, 4 are summarized in Table 8.5. (We omit the “special” cases p = 1, 3, whose results are the
same as for p = 0, 4, respectively, see Table 8.3.) By solving the Bethe equations (see Sec. 8.2.3) with a
generic value of anisotropy η, we obtain solutions (not shown) with the values of m1,m2,m3,m4 displayed in
the table. The corresponding Dynkin labels obtained using the formulas from Sec. 8.3.2, are also displayed
in the table. Finally, the irreps of the “left” and “right” algebras corresponding to these Dynkin labels are
shown in the final column.

Notice that the values of m’s and Dynkin labels for p = 0 and p = 4 in Table 8.5 are exactly the same,
which is due to the p↔ n− p duality (8.12).

8For the cases p = 0 and p = n, such solutions can be found in tables in [86].
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m1 m2 m3 a
(l)
1 a

(l)
2 a

(l)
3 Irreps.

p = 0 Uq(B3)
0 0 0 2 0 0 27
1 0 0 0 1 0 21
2 2 2 0 0 0 1

m1 m2 m3 a
(l)
1 a

(l)
2 a

(r)
1 Irreps.

p = 1
Uq(B2) ⊗ Uq(C1)

0 0 0 0 0 2 (1,3)
1 0 0 1 0 1 2(5,2)
2 0 0 2 0 0 (14,1)
2 1 0 0 2 0 (10,1)
2 2 2 0 0 0 2(1,1)

m1 m2 m3 a
(l)
1 a

(r)
1 a

(r)
2 Irreps.

p = 2
Uq(B1) ⊗ Uq(C2)

0 0 0 0 2 0 (1,10)
1 0 0 0 0 1 (1,5)
1 1 0 2 1 0 2(3,4)
2 2 0 4 0 0 (5,1)
2 2 1 2 0 0 (3,1)
2 2 2 0 0 0 2(1,1)

m1 m2 m3 a
(r)
1 a

(r)
2 a

(r)
3 Irreps.

p = 3 Uq(C3)

0 0 0 2 0 0 21
1 0 0 0 1 0 14
1 1 1 1 0 0 2(6)
2 2 2 0 0 0 2(1)

Table 8.4: Numbers of Bethe roots and Dynkin labels for A
(2)
2n with n = 3, N = 2.

The degeneracy pattern is particularly interesting for the case p = 2 in Table 8.5. Indeed, by explicitly
diagonalizing the transfer matrix for this case9, we find the following degeneracies

{1, 1, 12, 16, 16, 18} . (8.111)

That is, one eigenvalue is repeated 18 times; two distinct eigenvalues are each repeated 16 times; etc. What
is happening is that the irreps

(1,9) , (9,1) (8.112)

(see Table 8.5) are degenerate, thereby giving rise to the 18-fold degeneracy, due to the self-duality (8.13).
Moreover, the irreps

(1,3) , (3,1) , (1, 3̄) , (3̄,1) (8.113)

(see again Table 8.5) are all degenerate, thereby giving rise to the 12-fold degeneracy, due to the self-duality
(8.13) and Z2 symmetries (8.14), (8.15).

For eigenvalues corresponding to more than one irrep, it is enough to solve the Bethe equations corre-
sponding to just one of those irreps, such as the irrep with the minimal values of m’s. Hence, for the example
(8.112), it is enough to consider the reference state (m1 = m2 = m3 = m4 = 0). For the example (8.113), it is
enough to consider the state withm1 = 1,m2 = m3 = m4 = 0. Note that a non-minimal set {m1,m2, . . . ,mn}
generally does not form a monotonic decreasing sequence, i.e. does not satisfy m1 ≥ m2 ≥ . . . ≥ mn.10

For ε = 1 (and still n = 4, p = 2), the transfer matrix has an additional “bonus” symmetry [88].
Consequently, the two irreps (4,4) in Table 8.5 become degenerate (giving rise to a 32-fold degeneracy), and
the two irreps (1,1) become degenerate (giving rise to a 2-fold degeneracy). Interestingly, these levels have
the singular (exceptional) Bethe roots u(1) = 2η , u(2) = 4η; and for the 2-fold degenerate level, these Bethe
roots are repeated. This phenomenon is discussed further in Appendix K.

9We emphasize that we restrict to generic values of η.
10 It can happen that an eigenvalue corresponding to a single irrep is described by more than one set of Bethe roots, and

therefore by more than one set of m’s; and (for some cases with n
2
≤ p < n), the set of m’s corresponding to the Dynkin labels

for the irrep may not be minimal. For example, for C
(1)
4 with p = 3 and N = 2, the transfer matrix has an eigenvalue with

degeneracy 12 and Dynkin labels (a
(l)
1 , a

(r)
1 , a

(r)
2 , a

(r)
3 ) = (1, 1, 0, 0), which according to the formulas in section 8.3.2 corresponds

to (m1,m2,m3,m4) = (1, 1, 1, 0). Indeed, one can solve the Bethe equations (8.51), (8.52), (8.58), (8.59) and find such a solution
for this eigenvalue. However, this set of m’s is not minimal, as one can find another solution of these Bethe equations for this

eigenvalue with only (m1,m2,m3,m4) = (1, 1, 0, 0). Another example is D
(2)
4 with p = 2 and N = 2, for which there is an

eigenvalue with degeneracy 3 and Dynkin labels (a
(l)
1 , a

(r)
1 , a

(r)
2 ) = (2, 0, 0), corresponding to (m1,m2,m3) = (2, 2, 1); but by

solving the Bethe equations we can also find it with (m1,m2,m3) = (2, 1, 1).
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m1 m2 m3 m4 a
(l)
1 a

(l)
2 a

(l)
3 a

(l)
4 Irreps.

p = 0 Uq(D4)

0 0 0 0 2 0 0 0 35

1 0 0 0 0 1 0 0 28

2 2 1 1 0 0 0 0 1

m1 m2 m3 m4 a
(l)
1 a

(l)
2 a

(r)
1 a

(r)
2 Irreps.

p = 2
Uq(D2) ⊗ Uq(D2)

0 0 0 0 0 0 2 2 (1,9)
}

18
2 2 0 0 2 2 0 0 (9,1)

1 1 0 0 1 1 1 1 2(4,4)

1 0 0 0 0 0 0 2 (1, 3̄)
12

1 2 1 1 0 0 2 0 (1,3)

2 2 0 1 2 0 0 0 (3,1)

2 2 1 0 0 2 0 0 (3̄,1)

2 2 1 1 0 0 0 0 2(1,1)

m1 m2 m3 m4 a
(r)
1 a

(r)
2 a

(r)
3 a

(r)
4 Irreps.

p = 4 Uq(D4)

0 0 0 0 2 0 0 0 35

1 0 0 0 0 1 0 0 28

2 2 1 1 0 0 0 0 1

Table 8.5: Numbers of Bethe roots and Dynkin labels for D
(1)
n with n = 4, N = 2.

8.4 Duality and the Bethe ansatz

For the cases C
(1)
n , D

(1)
n and D

(2)
n+1, the p↔ n− p duality property of the transfer matrix (8.12) is reflected

in the Bethe ansatz solution. For concreteness, we restrict our attention here to the case C
(1)
n , for which

f(u, p) = −φ(u, p) , (8.114)

where φ(u, p) is given by (8.22).
The duality property of the transfer matrix (8.12) implies that corresponding eigenvalues satisfy

Λ(u, p) = f(u, p) Λ(u, n− p) . (8.115)

Let us define the rescaled eigenvalue λ(u, p) such that

Λ(u, p) = φ(u, p)λ(u, p) . (8.116)

In terms of λ(u, p), the duality relation (8.115) takes the form

λ(u, p) =
1

f(u, p)
λ(u, n− p) , (8.117)

as follows from (8.114), (8.116) and f(u, n− p) = 1/f(u, p).
Let us now try to understand how the duality relation (8.117) emerges from the Bethe ansatz solution

(8.21), which in terms of λ(u, p) (8.116) reads

λ(u, p) =A(u) z0(u) y0(u, p) c(u)2N + Ã(u) z̃0(u) ỹ0(u, p) c̃(u)2N

+
{ n−1∑
l=1

[
zl(u) yl(u, p)Bl(u) + z̃l(u) ỹl(u, p) B̃l(u)

]}
b(u)2N . (8.118)

For the self-dual case p = n/2, the relation (8.117) is obvious, since f(u, n/2) = 1. For the case p = 0, we
note the identity

yl(u, 0)

yl(u, n)
=

1

f(u, 0)
, l = 0, 1, . . . , n− 1 . (8.119)

Since A(u) and {Bl(u)} for p = 0 are the same as for p = n (the Bethe equations for p = 0 are the same as
for p = n), it follows from (8.118) and (8.119) that

λ(u, 0) =
1

f(u, 0)
λ(u, n) , (8.120)
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in agreement with (8.117).

To derive the duality relation (8.117) from the Bethe ansatz solution for 0 < p < n/2 requires more effort.
For simplicity, let us consider as an example the case n = 3 with p = 1, which is related by duality to p = 2.
The rescaled eigenvalue is given by (8.118)

λ(u, p) = z0(u) y0(u, p)
Q[1](u+ 2η)

Q[1](u− 2η)

[
2 sinh(

u

2
− 2η) sinh(

u

2
− 8η)

]2N
+
{
z1(u) y1(u, p)

Q[1](u− 6η)

Q[1](u− 2η)

Q[2](u)

Q[2](u− 4η)

+ z2(u) y2(u, p)
Q[2](u− 8η)

Q[2](u− 4η)

Q[3](u)

Q[3](u− 8η)

} [
2 sinh(

u

2
) sinh(

u

2
− 8η)

]2N
+ . . . , (8.121)

where the crossed terms (indicated by the ellipsis) have not been explicitly written. Let us define the barred
Q-functions

Q̄[l](u) =

m̄l∏
j=1

sinh
(

1
2 (u− ū[l]

j )
)

sinh
(

1
2 (u+ ū

[l]
j )
)
, Q̄[l](−u) = Q̄[l](u) , (8.122)

(in terms of unbarred ones Q[l](u)) as follows:

S(u)− S(−u) = c sinh2N (
u

2
) sinh(u)Q[2](u) , (8.123)

S(u) = χ(u+ 2η)Q[1](u+ 2η) Q̄[1](u− 2η) , (8.124)

Q̄[2](u) = Q[2](u) , (8.125)

Q̄[3](u) = Q[3](u) , (8.126)

where

χ(u) = 1 + cosh(u) , c = 2 sinh(2η(1 + 2m1 −m2 −N)) , (8.127)

and

m̄1 = N −m1 +m2 , m̄2 = m2 , m̄3 = m3 . (8.128)

(The above results for m̄1 and c follow from the asymptotic limit u → ∞ of (8.123).) We show below that,
if Q[l](u) are the Q-functions for p = 1, then Q̄[l](u) are the Q-functions for p = 2.

8.4.1 Duality of the Bethe equations

We first show that (8.123)-(8.126) map the p = 1 Bethe equations:

 sinh

(
u

[1]
k

2 + η

)
sinh

(
u

[1]
k

2 − η
)


2N cosh

(
u

[1]
k

2 − 2η

)
cosh

(
u

[1]
k

2 + 2η

)


2

=
Q

[1]
k

(
u

[1]
k + 4η

)
Q

[1]
k

(
u

[1]
k − 4η

) Q[2]
(
u

[1]
k − 2η

)
Q[2]

(
u

[1]
k + 2η

) , (8.129)

1 =
Q[1]

(
u

[2]
k − 2η

)
Q[1]

(
u

[2]
k + 2η

) Q[2]
k

(
u

[2]
k + 4η

)
Q

[2]
k

(
u

[2]
k − 4η

) Q[3]
(
u

[2]
k − 2η

)
Q[3]

(
u

[2]
k + 2η

) , (8.130)

1 =
Q[2]

(
u

[3]
k − 4η

)
Q[2]

(
u

[3]
k + 4η

) Q[3]
k

(
u

[3]
k + 8η

)
Q

[3]
k

(
u

[3]
k − 8η

) , (8.131)
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to the p = 2 Bethe equations:

 sinh

(
ū

[1]
k

2 + η

)
sinh

(
ū

[1]
k

2 − η
)


2N

=
Q̄

[1]
k

(
ū

[1]
k + 4η

)
Q̄

[1]
k

(
ū

[1]
k − 4η

) Q̄[2]
(
ū

[1]
k − 2η

)
Q̄[2]

(
ū

[1]
k + 2η

) , (8.132)

cosh

(
ū

[2]
k

2 − η
)

cosh

(
ū

[2]
k

2 + η

)


2

=
Q̄[1]

(
ū

[2]
k − 2η

)
Q̄[1]

(
ū

[2]
k + 2η

) Q̄[2]
k

(
ū

[2]
k + 4η

)
Q̄

[2]
k

(
ū

[2]
k − 4η

) Q̄[3]
(
ū

[2]
k − 2η

)
Q̄[3]

(
ū

[2]
k + 2η

) , (8.133)

1 =
Q̄[2]

(
ū

[3]
k − 4η

)
Q̄[2]

(
ū

[3]
k + 4η

) Q̄[3]
k

(
ū

[3]
k + 8η

)
Q̄

[3]
k

(
ū

[3]
k − 8η

) , (8.134)

Evidently, it follows from (8.125) and (8.126) that (8.131) implies (8.134).

Setting u = u
[2]
k in (8.123), remembering that Q[2](u

[2]
k ) = 0, we obtain the relation

Q[1]
(
u

[2]
k − 2η

)
Q[1]

(
u

[2]
k + 2η

) =
χ
(
u

[2]
k + 2η

)
χ
(
u

[2]
k − 2η

) Q̄[1]
(
u

[2]
k − 2η

)
Q̄[1]

(
u

[2]
k + 2η

) . (8.135)

With the help of this relation, it follows that (8.130) implies (8.133).

Setting u = ±u[1]
k + 2η in (8.123), noting that therefore Q[1](u − 2η) = 0 and S(−u) = 0, we obtain the

pair of relations

χ(u
[1]
k + 4η)Q[1](u

[1]
k + 4η) Q̄[1](u

[1]
k ) = c sinh2N (

u
[1]
k

2
+ η) sinh(u

[1]
k + 2η)Q[2](u

[1]
k + 2η) ,

χ(u
[1]
k − 4η)Q[1](u

[1]
k − 4η) Q̄[1](u

[1]
k ) = −c sinh2N (

u
[1]
k

2
− η) sinh(u

[1]
k − 2η)Q[2](u

[1]
k − 2η) . (8.136)

Forming the ratio of these relations, we arrive at the Bethe equation (8.129). Similarly, setting u = ±ū[1]
k −2η

in (8.123), we obtain the Bethe equation (8.132).

8.4.2 Duality of the transfer-matrix eigenvalues

In order to relate the transfer-matrix eigenvalues for p = 1 and p = 2, we observe from (8.123) that

c =
S(u)− S(−u)

sinh2N (u2 ) sinh(u)Q[2](u)
=

S(u− 4η)− S(−u+ 4η)

sinh2N (u2 − 2η) sinh(u− 4η)Q[2](u− 4η)
, (8.137)

where the second equality follows from shifting u 7→ u−4η. Making use of (8.124) and (8.125), and rearranging
terms, we obtain the relation

sinh2N (
u

2
− 2η) sinh(u− 4η)χ(u+ 2η)

Q[1](u+ 2η)

Q[1](u− 2η)

+ sinh2N (
u

2
) sinh(u)χ(u− 6η)

Q[1](u− 6η)

Q[1](u− 2η)

Q[2](u)

Q[2](u− 4η)

= sinh2N (
u

2
− 2η) sinh(u− 4η)χ(u− 2η)

Q̄[1](u+ 2η)

Q̄[1](u− 2η)

+ sinh2N (
u

2
) sinh(u)χ(u− 2η)

Q̄[1](u− 6η)

Q̄[1](u− 2η)

Q̄[2](u)

Q̄[2](u− 4η)
. (8.138)
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This relation implies that

z0(u) y0(u, 1)
Q[1](u+ 2η)

Q[1](u− 2η)

[
2 sinh(

u

2
− 2η) sinh(

u

2
− 8η)

]2N
+ z1(u) y1(u, 1)

Q[1](u− 6η)

Q[1](u− 2η)

Q[2](u)

Q[2](u− 4η)

[
2 sinh(

u

2
) sinh(

u

2
− 8η)

]2N
=

1

f(u, 1)

{
z0(u) y0(u, 2)

Q̄[1](u+ 2η)

Q̄[1](u− 2η)

[
2 sinh(

u

2
− 2η) sinh(

u

2
− 8η)

]2N
+ z1(u) y1(u, 2)

Q̄[1](u− 6η)

Q̄[1](u− 2η)

Q̄[2](u)

Q̄[2](u− 4η)

[
2 sinh(

u

2
) sinh(

u

2
− 8η)

]2N }
. (8.139)

Finally, in view of also (8.121), (8.125), (8.126) and the identity

y2(u, 1)

y2(u, 2)
=

1

f(u, 1)
, (8.140)

we conclude that the duality relation (8.117) is indeed satisfied by the Bethe ansatz solution for n = 3 , p = 1.

8.4.3 Duality of the Dynkin labels

It is interesting to see if the formulas in Sec. 8.3.2 for the Dynkin labels are compatible with duality. For the
case n = 3, p = 1, where the QG symmetry is Uq(C2)⊗ Uq(C1), the Dynkin labels are given by

a
(l)
1 = m1 − 2m2 + 2m3 ,

a
(l)
2 = m2 − 2m3 ,

a
(r)
1 = N −m1 . (8.141)

On the other hand, for the dual case n = 3, p = 2, where the QG symmetry is Uq(C1)⊗ Uq(C2), the Dynkin
labels are given by

ā
(l)
1 = m̄2 − 2m̄3 ,

ā
(r)
1 = N − 2m̄1 + m̄2 ,

ā
(r)
2 = m̄1 − m̄2 , (8.142)

where we again use a bar to denote quantities for the p = 2 case. If a transfer-matrix eigenvalue (Λ(u, 1) or
equivalently its dual Λ(u, 2)) forms a single irreducible representation of the QG, then we expect that the
corresponding Dynkin labels (8.141) and (8.142) should be related by the duality relations11

ā
(l)
1 = a

(r)
1 ,

ā
(r)
i = a

(l)
i , i = 1, 2 . (8.143)

Making use of the relation (8.128) between {ml} and {m̄l}, we find that the relations (8.143) are indeed
satisfied, provided that the m’s satisfy the constraint

N = m1 +m2 − 2m3 or equivalently m̄1 − 2m̄2 + 2m̄3 = 0 . (8.144)

Some simple examples for N = 2 are displayed in Table 8.6.
Interestingly, not all transfer-matrix eigenvalues have Bethe roots that satisfy the constraint (8.144). (A

simple example is the reference-state eigenvalue, for which m1 = m2 = m3 = 0.) Such transfer-matrix
eigenvalues correspond to reducible representations of the QG (i.e., they correspond to a direct sum of two or

more irreps). Indeed, it was noted in the example 2 of section 7.5.4 that for C
(1)
n with odd n and p = n±1

2 ,
there are additional degeneracies in the spectrum, which may be due to some yet unknown discrete symmetry.

11For general values of n and p, we expect the duality relations

ā
(l)
i = a

(r)
i , i = 1, . . . , p ,

ā
(r)
i = a

(l)
i , i = 1, . . . , n− p ,

where the unbarred and barred quantities correspond to p and n− p, respectively.
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m1 m2 m3 a
(l)
1 a

(l)
2 a

(r)
1 Irreps.

p = 1 Uq(C2)⊗ Uq(C1)
2 0 0 2 0 0 (10,1)

2 2 1 0 0 0 2(1,1)

m̄1 m̄2 m̄3 ā
(l)
1 ā

(r)
1 ā

(r)
2 Irreps.

p = 2 Uq(C1)⊗ Uq(C2)
0 0 0 0 2 0 (1,10)

2 2 1 0 0 0 2(1,1)

Table 8.6: Numbers of Bethe roots, which satisfy the constraint (8.144), and the corresponding Dynkin labels

for C
(1)
n with n = 3, N = 2 and p = 1, 2.

8.4.4 Further remarks

We have seen that, for the case C
(1)
n with n = 3, the relations (8.123)-(8.126) implement the duality trans-

formation p = 1 ↔ p = 2 on the Bethe ansatz solution. Note that the Bethe roots corresponding to

transfer-matrix eigenvalues related by this duality satisfy u
[2]
k = ū

[2]
k and u

[3]
k = ū

[3]
k ; i.e. only the type-1

Bethe roots (u
[1]
k , ū

[1]
k ) are different. We expect that, for C

(1)
n with other values of n, as well as for D

(1)
n and

D
(2)
n+1, generalizations of the relations (8.123)-(8.126) can be found to implement the duality transformations

p↔ n−p on the Bethe ansatz solutions. For supersymmetric (graded) integrable spin chains, a different type
of “duality” transformation can be defined, which can be implemented on the corresponding Bethe ansatz
solutions by relations somewhat analogous to (8.123)-(8.126), see e.g. [98, 99] and references therein.



Chapter 9

Conclusions and further developments

We used quantum group symmetries and some additional discrete symmetries to explain de degeneracies and
multiplicities of spin chains constructed from anisotropic R-matrices and diagonal K-matrices depending on
a discrete parameter p. We have proved that such spin chains have QG symmetry corresponding to removing
the node p of the extended Dynkin diagram of ĝ.

The cases C
(1)
n and D

(1)
n were proved to have a duality symmetry p→ n− p which makes the spin chains

for p and n−p have the same degeneracies. The existence of such symmetry could be expected by looking the
middle column of the Table 6.1 or the form of their Dynkin diagrams in the Figure 8.1. In addition to that,
when n is even and p = n

2 there is a self duality symmetry that makes representations of the type (1, a) and
(a, 1) become degenerated. When there is self-duality but also ε = 1 (γ0 = −1) there is an extra symmetry
which we called bonus symmetry making states with representation 2(a, a) become degenerated, i.e., have
degeneracy 2a2.

For A
(2)
2n−1, B

(1)
n and D

(1)
n we also have a left Z2 symmetry transforming complex representations (R̄, 1)

into their conjugates (R, 1). In addition to that D
(1)
n has also a right Z2 symmetry transforming (1, R̄) into

(1, R).

We constructed explicitly the transformations which generate all the symmetries described above and
prove that they are responsible for the already mentioned effects. The proofs (even the ones in the appendix
J which were done using Mathematica) were performed without to specify a number of sites N , and are
therefore valid for any finite number of sites. It is worth to mention that in the process to prove those
symmetries we found new properties for the R-matrix which in our knowledge are also new.

Still for C
(1)
n and D

(1)
n , when n is odd and p = n±1

2 there is some unknown symmetry making states
with different dimensions become degenerated. In the example presented in section 7.5.5 the representations
(1, 9) and one (6, 4) become a 33 and the (15, 1) and the other (6, 4) become a 39. This is happening also for

D
(2)
n+1 in [89]. All the other symmetries we worked with related representations with same dimension. What

is happening for these cases is different and it would be very interesting to find what is the symmetry which
causes this effect.

All the models described in this work (except D
(2)
n+1 whose symmetries were understood in [89]) were

constructed using diagonal K-matrices depending on a discrete parameter p. There are, however some
additional diagonal K-matrices solutions with a boundary parameter [62] which in principal would generate
spin chains with QG symmetry. We leave these cases for future investigations.

In chapter 8 we have done analytical Bethe ansatz for all the cases discussed in the Chapter 7 for both

ε = 0, 1 and the case with D
(2)
n+1

1 (for ε = 0).

Usually, for a same model, the difference for the Bethe equations of close spin chains and open spin chains
appear in two points: the N in the lhs of the Bethe equations becomes 2N , and the Q-functions become
doubled. In our case we found an additional effect, we have an overall factor Φl,p,n(u) which is different from
1 for l = p and equal to 1 otherwise. We numerically checked completeness for a small number of sites.

We also conjectured a generalization for open chains for the Reshetikhin’s formula for the Bethe equations.
Such formula depends on the simple roots of the algebras.

In addition to that we constructed formulas relating the Dynkin labels of the Bethe states with the
number of Bethe roots of each type. These formulas help to determine the degeneracies of the transfer-
matrix eigenvalues.

There is one case, however, which remains to be solved. The D
(2)
n+1 for ε = 1 has so far resisted to our

attempts to find its Bethe ansatz. We have made some progress for this case with n = 1 in [91] where

1 the investigations for this case started in [87]).
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we constructed an ansatz which gives all the levels with odd degeneracy but none of the ones with even
degeneracy. In principle, we expected that all the levels would have odd degeneracy but it was found in [89]
that some degeneracies are doubled. This does not happen for the other algebras considered and we do not
know so far what symmetry is generating this effect. It happens that all the states our ansatz do not find
are exactly the ones which have the doubled degeneracy. The difficulty increases with the number of sites,
since the proportion of states with even degeneracy grows fast with the number of sites.



Appendix A

Zero Curvature for KdV hierarchy

Here we write down the time component of the two dimensional gauge potential generating the first three
flows for the KdV hierarchy. Let

AtN ,KdV = D′(N)
+D′(N−1)

+ · · ·+D′(0)
, D′(j) ∈ G′j (A.1)

where we find by solving the zero curvature representation (3.6) in the homogeneous gradation. For N = 3
we have

D′(3)
= ζ3h,

D′(2)
= −ζ2Eα + Jζ2E−α,

D′(1)
=

1

2
∂xJζE−α +

1

2
Jζh,

D′(0)
= −1

2
JEα +

(
1

4
∂2
xJ +

1

2
J2

)
E−α +

1

4
∂xJh,

(A.2)

and N = 5

D′(5)
= ζ5h,

D′(4)
= −ζ4Eα + Jζ4E−α,

D′(3)
=

1

2
∂xJζ

3E−α +
1

2
Jζ3h,

D′(2)
= −1

2
Jζ2Eα +

(
1

4
∂2
xJ +

1

2
J2

)
ζ2E−αζ

2 +
1

4
∂xJζ

2h,

D′(1)
=

(
1

8
∂3
xJ +

3

4
J∂xJ

)
ζE−α +

(
1

8
∂2
xJ +

3

8
J2

)
ζh

D′(0)
=

(
−1

8
∂2
xJ −

3

8
J2

)
Eα +

(
1

16
∂3
xJ +

3

8
J∂xJ

)
h

+

(
1

16
∂4
xJ +

3

8
(∂xJ)2 +

1

2
J∂2

xJ +
3

8
J3

)
E−α

(A.3)
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and for N = 7

D′(7)
= ζ7h,

D′(6)
= −ζ6Eα + Jζ6E−α,

D′(5)
=

1

2
∂xJζ

5E−α +
1

2
Jζ5h,

D′(4)
= −1

2
Jζ4Eα +

(
1

4
∂2
xJ +

1

2
J2

)
ζ4E−α +

1

4
∂xJζ

4h,

D′(3)
=

(
1

8
∂3
xJ +

3

4
J∂xJ

)
ζ3E−α +

(
1

8
∂2
xJ +

3

8
J2

)
ζ3h

D′(2)
=

(
−1

8
∂2
xJ −

3

8
J2

)
ζ2Eα +

(
1

16
∂3
xJ +

3

8
J∂xJ

)
ζ2h

+

(
1

16
∂4
xJ +

3

8
(∂xJ)2 +

1

2
J∂2

xJ +
3

8
J3

)
ζ2E−α

D′(1)
=

(
1

32
∂5
xJ +

5

8
(∂xJ)(∂2

xJ) +
5

16
J(∂3

xJ) +
15

16
J2(∂xJ)

)
ζE−α

+

(
1

32
(∂4
xJ) +

5

32
(∂xJ)2 +

5

16
J(∂2

xJ) +
5

16
J3

)
ζh

+ D′(0)
=

(
− 1

32
(∂4
xJ)− 5

32
(∂xJ)2 − 5

16
J(∂2

xJ)− 5

16
J3

)
Eα

+

(
1

64
(∂6
xJ) +

5

16
(∂2
xJ)2 +

15

32
(∂xJ)(∂3

xJ)

)
E−α +

+

(
3

16
J(∂4

xJ) +
35

32
J(∂xJ)2 +

25

32
J2(∂2

xJ) +
5

16
J4

)
E−α +

+

(
1

64
(∂5
xJ) +

5

16
(∂xJ)(∂2

xJ) +
5

32
J(∂3

xJ) +
15

32
J2(∂xJ)

)
h (A.4)



Appendix B

Equivalence between mKdV and KdV
variables

We now verify the equivalence between mKdV and KdV variables. From (3.70) we find

∂xQ = − (1 + ε)

2σ
∂x (Λ− p) eΛ−p(eq + e−q + η)

− (1 + ε)

2σ
∂xqe

Λ−p(eq − e−q) +
2(1− ε)

σ
∂x(p− Λ)ep−Λ (B.1)

and using (3.72), (3.59) and(3.60) we obtain

∂xQ = 2β− −
QP

2
+QΩ (B.2)

Consider now ∂xP = J1 + J2 = ∂x(w1 + w2). In terms of Miura transformation

∂xP = ε∂x(v1 + v2)− (v2
1 + v2

2) = ε∂2
xp−

1

2
(∂xp)

2 − 1

2
(∂xq)

2.) (B.3)

Acting with ∂x in (3.72) and using (B.3) and (3.70) we find

Q

2
(∂xP + 2∂xΩ) =

∂xQ

2
(P − 2Ω) +

1

2
Q
[
(∂xp)

2 − (∂xq)
2
]

−Q∂xp∂xΛ +
(1 + ε)

2σ
∂xp∂xqe

Λ−p(eq − e−q) +
2ε

σ2
∂xq(e

q + e−q) (B.4)

where p = v1 + v2, q = v1 − v2. Substituting the equation (3.70) in the equation (3.73) we find

Q

2

[
(∂xp)

2 − (∂xq)
2
]

=
2∂xp

σ2
(eq − e−q)− 2ε

σ2
∂xq(e

q + e−q)

− Q

2

(
−Ω2 + ΩP − P 2

4
+
Q2

4

)
+ β+Q− β−(P − 2Ω) (B.5)

Substituting this result in (B.4) and eliminating the mKdV variables using (3.59) and (3.60) we obtain

∂xP + 2∂xΩ = −1

4
(P 2 +Q2) + ΩP − Ω2 + 2β+ (B.6)

Eqns. (B.2) and (B.6) correspond precisely to the Type-II Bäcklund for the KdV hierarchy.
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Appendix C

Consistency with Equations of Motion

In this appendix we verify that the compatibility of Bäcklund transformations lead us to the equation of
motion.

We start with the spatial part which is common to all N . For the KdV equation it is given by

∂xP =
β2

2
− 1

2
Q2. (C.1)

In what follows it will be useful calculate its spatial derivatives:

∂2
xP = −Q∂xQ; (C.2)

∂3
xP = −(∂xQ)2 −Q(∂2

xQ); (C.3)

∂4
xP = −3(∂xQ)(∂2

xQ)−Q(∂3
xQ); (C.4)

∂5
xP = −3(∂2

x)2 − 4(∂xQ)(∂3
xQ)−Q(∂4

xQ); (C.5)

∂6
xP = −10(∂2

xQ)(∂3
xQ)− 5(∂xQ)(∂4

xQ)−Q(∂5
xQ); (C.6)

∂7
xP = −10(∂3

xQ)2 − 15(∂2
xQ)(∂4

xQ)− 6(∂xQ)(∂5
xQ)−Q∂6

xQ; (C.7)

∂8
xP = −35(∂3

xQ)(∂4
xQ)− 21(∂2

xQ)(∂5
xQ)− 7(∂xQ)(∂6

xQ)−Q(∂7
xQ). (C.8)

N=3 (KdV)

The temporal part of the KdV BT is given by

4∂t3P = −Q(∂2
xQ) +

1

2

[
(∂xQ)2 + (∂xP )2

]
. (C.9)

In order to verify the consistency of this transformation we act with the spatial derivative to obtain

4∂x∂t3P = −Q∂3
xQ+ 3(∂xP )(∂2

xP ), (C.10)

eliminating the term −Q∂3
xQ from equation (C.4) we find

4∂x∂t3P = ∂4
xP + 3(∂xP )(∂2

xP ) + 3(∂xQ)(∂2
xQ). (C.11)

Substituting

∂xP = J1 + J2, ∂xQ = J1 − J2 (C.12)

(C.11) becomes precisely the sum of two KdV equations.

N=5

The temporal part of the BT for N=5 equation is given by

16∂t5P =−Q(∂4
xQ) + (∂xQ)(∂3

xQ) + 5(∂xP )(∂3
xP ) +

5

2
(∂2
xP )2 − 1

2
(∂2
xQ)2

+
5

2
(∂xP )

[
(∂xP )2 + 3(∂xQ)2

]
(C.13)
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Acting ∂x in the equation (C.13) we obtain

16∂x∂t5P =−Q(∂5
xQ) + 10(∂2

xP )(∂3
xP ) + 5(∂xP )(∂4

xP ) +
15

2
(∂xP )2(∂2

xP )

+
15

2
(∂2
xP )(∂xQ)2 + 15(∂xP )(∂xQ)(∂2

xQ). (C.14)

Then we isolate the term −Q(∂5
xQ) from equation (C.6) to find

16∂x∂t5P =∂6
xP + 10(∂2

xQ)(∂3
xQ) + 5(∂xQ)(∂4

xQ) + 10(∂2
xP )(∂3

xP ) + 5(∂xP )(∂4
xP )

+
15

2
(∂2
xP )

[
(∂xP )2 + (∂xP )2

]
+ 15(∂xP )(∂xQ)(∂2

xQ), (C.15)

Substituting (C.12) we obtain the sum of two equations for N = 5, i.e., eqn. (3.9).

N=7

The temporal BT for the N = 7 equation is

64∂t7P =−Q(∂6
xQ) + (∂xQ)(∂5

xQ) + 7(∂xP )(∂5
xP )− (∂2

xQ)(∂4
xQ) + 14(∂2

xP )(∂4
xP )

+
1

2
(∂3
xQ)2 +

21

2
(∂3
xP )2 +

35

2
(∂3
xP )(∂xP )2 +

35

2
(∂3
xP )(∂xQ)2

+ 35(∂3
xQ)(∂xP )(∂xQ) +

35

2
(∂xP )

[
(∂2
xP )2 + (∂2

xQ)2
]

+ 35(∂2
xP )(∂2

xQ)2(∂xQ)

+
35

8

[
(∂xP )2 + (∂xQ)2

]
+

105

4
(∂xQ)2(∂xP )2. (C.16)

Likewise we did for other values of N , acting ∂x in the above equation. Then we isolate −Q(∂7
xQ) from

equation (C.8) to find

64∂x∂t7P =∂8
xP + (∂xP )(∂6

xP ) + 7(∂xQ)(∂6
xQ) + 21(∂2

xP )(∂5
xP ) + 21(∂2

xQ)(∂5
xQ)

+ 35(∂3
xP )(∂4

xP ) + 35(∂3
xQ)(∂4

xQ) +
35

2
(∂4
xP )

[
(∂xP )2 + (∂xQ)2

]
+ 35(∂xP )(∂xQ)(∂4

xQ) + 70(∂xP )
[
(∂2
xP )(∂3

xP ) + (∂2
xQ)(∂3

xQ)
]

+ 70(∂xQ)
[
(∂2
xQ)(∂3

xP ) + (∂2
xP )(∂3

xQ)
]

+
35

2
(∂2
xP )3

+
105

2
(∂2
xP )(∂2

xQ)2 +
35

2
(∂2
xP )(∂xP )3 +

35

2
(∂2
xQ)(∂xQ)3

+
105

2
(∂2
xQ)(∂xQ)(∂xP )2 +

105

2
(∂2
xP )(∂xP )(∂xQ)2 (C.17)

Substituting (C.12) we obtain the equation of motion for N = 7 (3.10).



Appendix D

Representation of the ŝl(2,1) affine Lie
superalgebra

In this work we are considering the following representation of the ŝl(2,1) affine superalgebra,

K
(2n+1)
1 =

 0 −λn 0
−λn+1 0 0

0 0 0

 , K
(2n+1)
2 =

λn+ 1
2 0 0

0 λn+ 1
2 0

0 0 2λn+ 1
2

 , (D.1)

M
(2n+1)
1 =

 0 −λn 0
λn+1 0 0

0 0 0

 , M
(2n)
2 =

λn 0 0
0 −λn 0
0 0 0

 , (D.2)

F
(2n+ 3

2 )
1 =

 0 0 λn+ 1
2

0 0 −λn+1

λn+1 −λn+ 1
2 0

 , F
(2n+ 1

2 )
2 =

 0 0 −λn
0 0 λn+ 1

2

λn+ 1
2 −λn 0

 , (D.3)

G
(2n+ 1

2 )
1 =

 0 0 λn

0 0 λn+ 1
2

λn+ 1
2 λn 0

 , G
(2n+ 3

2 )
2 =

 0 0 −λn+ 1
2

0 0 −λn+1

λn+1 λn+ 1
2 0

 . (D.4)
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Appendix E

N = 5 Lax component

The Lax component At5 takes the following form,

At5 =


b11 b12 b13

b21 b22 b23

b31 b32 b33

 , (E.1)

where,

b11 = λ5/2 + λ2 ∂2
xφ−

iλ3/2

2
ψ̄∂xψ̄ + λ

(
1

2
(∂xφ)3 − 1

4
∂3
xφ−

3i

4
∂xφ ψ̄∂xψ̄

)
+λ1/2

(
i

2
(∂xφ)2 ψ̄∂xψ̄ +

i

8
∂xψ̄∂

2
xψ̄ −

i

8
ψ̄∂3

xψ̄

)
+

5

8
(∂xφ)2∂3

xφ+
5

8
∂xφ(∂2

xφ)2

+
5i

4
(∂xφ)3 ψ̄∂xψ̄ −

5i

16
∂xφ ψ̄∂

3
xψ̄ −

5i

16
∂2
xφ ψ̄∂

2
xψ̄ −

5i

16
∂3
xφ ψ̄∂xψ̄ −

3

8
(∂xφ)5, (E.2)

b12 = −λ2 +
λ

2

(
∂2
xφ+ (∂xφ)2 − iψ̄∂xψ̄

)
− 1

8
(∂2
xφ)2 +

1

8
∂4
xφ+

1

4
∂xφ∂

3
xφ−

3

4
(∂xφ)2∂2

xφ

−3

8
(∂xφ)4 +

i

4
∂xφψ̄∂

2
xψ̄ + i(∂xφ)2ψ̄∂xψ̄ +

i

2
∂2
xφ ψ̄∂xψ̄ +

i

8
∂xψ̄∂

2
xψ̄ −

i

8
ψ̄∂3

xψ̄, (E.3)

b13 = λ2
√
iψ̄ +

λ3/2
√
i

2

(
∂xφ ψ̄ + ∂xψ̄

)
+
λ
√
i

4

(
∂xφ∂xψ̄ − 2(∂xφ)2ψ̄ − ∂2

xφψ̄ + ∂2
xψ̄
)

+
λ1/2
√
i

8

(
∂xφ∂

2
xψ̄ − 3(∂xφ)2∂xψ̄ − ∂2

xφ∂xψ̄ + ∂3
xφψ̄ − 3∂xφ∂

2
xφψ̄ − 3(∂xφ)3ψ̄ + ∂3

xψ̄
)

+

√
i

16

(
∂xφ∂

3
xψ̄ − ∂2

xφ∂
2
xψ̄ + ∂3

xφ∂xψ̄ − ∂4
xφ ψ̄ + ∂4

xψ̄
)
−
√
i

2
∂xφ∂

2
xφ∂xψ̄

+

√
i

4

(
∂2
xφ (∂xφ)2 ψ̄ − (∂xφ)3∂xψ̄ − (∂xφ)2 ∂2

xψ̄
)

+

√
i

8

(
3(∂xφ)4 ψ̄ − 3∂xφ∂

3
xφ ψ̄ − (∂2

xφ)2ψ̄
)
, (E.4)

b21 = −λ3 +
λ2

2

(
−∂2

xφ+ (∂xφ)2 − iψ̄∂xψ̄
)

+ λ

(
1

4
∂xφ∂

3
xφ−

1

8
(∂2
xφ)2 − 1

8
∂4
xφ

−3

8
(∂xφ)4 +

3

4
(∂xφ)2∂2

xφ+ i(∂xφ)2ψ̄∂xψ̄ −
i

4
∂xφψ̄∂

2
xψ̄ −

i

2
∂2
xφψ̄∂xψ̄

+
i

8
∂xψ̄∂

2
xψ̄ −

i

8
ψ̄∂3

xψ̄

)
, (E.5)
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b22 = λ5/2 + λ2∂xφ−
iλ3/2

2
ψ̄∂xψ̄ + λ

(
1

4
∂3
xφ−

1

2
(∂xφ)3 +

3i

4
∂xφψ̄∂xψ̄

)
+λ1/2

(
i

2
(∂xφ)2ψ̄∂xψ̄ +

i

8
∂xψ̄∂

2
xψ̄ −

i

8
ψ̄∂3

xψ̄

)
+

1

16
∂5
xφ−

5

8
∂xφ(∂2

xφ)2

−5

8
∂3
xφ(∂xφ)2 +

3

8
(∂xφ)5 +

5i

16
∂2
xφψ̄∂

2
xψ̄ +

5i

16
∂3
xφψ̄∂xψ̄ +

5i

16
∂xφψ̄∂

3
xψ̄

−5i

4
(∂xφ)3ψ̄∂xψ̄, (E.6)

b23 = λ5/2
√
iψ̄ +

λ2
√
i

2

(
∂xψ̄ − ∂xφψ̄

)
+
λ3/2
√
i

4

(
∂2
xφψ̄ − 2(∂xφ)2ψ̄ − ∂xφ∂xψ̄ + ∂2

xψ̄
)

+
λ
√
i

8

(
∂2
xφ∂xψ̄ − ∂xφ∂2

xψ̄ − ∂3
xφψ̄ − 3(∂xφ)2∂xψ̄ + 3(∂xφ)3ψ̄ − 3∂xφ∂

2
xφψ̄ + ∂3

xψ̄
)

+
λ1/2
√
i

16

(
∂4
xφ ψ̄ − ∂3

xφ∂xψ̄ − ∂xφ∂3
xψ̄ + ∂2

xφ∂
2
xψ̄ + ∂4

xψ̄
)
− λ1/2

√
i

2
∂xφ∂

2
xφ∂xψ̄

+
λ1/2
√
i

4

(
(∂xφ)3∂xψ̄ − (∂xφ)2∂2

xψ̄ − ∂2
xφ(∂xφ)2ψ̄ +

3

2
(∂xφ)4 ψ̄ − 12∂3

xφ∂xφ ψ̄

−4(∂2
xφ)2 ψ̄

)
, (E.7)

b31 = λ5/2
√
iψ̄ +

λ2
√
i

2
(∂xφψ̄ − ∂xψ̄) +

λ3/2
√
i

4

(
∂2
xφψ̄ − ∂xφ∂xψ̄ − 2(∂xφ)2ψ̄ + ∂2

xψ̄
)

+
λ
√
i

8

(
∂xφ∂

2
xψ̄ − ∂2

xφ∂xψ̄ + ∂3
xφψ̄ + 3∂xφ∂

2
xφψ̄ − 3(∂xφ)3ψ̄ + 3(∂xφ)2∂xψ̄ − ∂3

xψ̄
)

+
λ1/2
√
i

16

(
∂4
xφ ψ̄ − ∂3

xφ∂xψ̄ − ∂xφ∂3
xψ̄ + ∂2

xφ∂
2
xψ̄ + ∂4

xψ̄
)
− λ1/2

√
i

2
∂xφ∂

2
xφ∂xψ̄

+
λ1/2
√
i

4

(
(∂xφ)3∂xψ̄ − (∂xφ)2∂2

xψ̄ − ∂2
xφ(∂xφ)2ψ̄ − 1

2
(∂2
xφ)2ψ̄ − 12∂xφ∂

3
xφψ̄

+12(∂xφ)4 ψ̄
)
, (E.8)

b32 = λ2
√
iψ̄ − λ3/2

√
i

2
(∂xφ ψ̄ + ∂xψ̄) +

λ
√
i

4

(
∂xφ∂xψ̄ − ∂2

xφ ψ̄ − 2(∂xφ)2 ψ̄ + ∂2
xψ̄
)

+
λ1/2
√
i

8

(
3∂xφ∂

2
xφψ̄ + 3(∂xφ)3ψ̄ − ∂3

xφψ̄ + ∂2
xφ∂xψ̄ − ∂xφ∂2

xψ̄ + 3(∂xφ)2∂xψ̄ − ∂3
xψ̄
)

+

√
i

16

(
∂xφ∂

3
xψ̄ − ∂2

xφ∂
2
xψ̄ − ∂4

xφ ψ̄ + ∂3
xφ∂xψ̄ + ∂4

xψ̄
)
−
√
i

2
∂xφ∂

2
xφ∂xψ̄

−
√
i

4
(∂xφ)2 ∂2

xψ̄ −
√
i

4
(∂xφ)3 ∂xψ̄ −

√
i

8
(∂2
xφ)2 ψ̄ − 3

8
∂3
xφ∂xφ ψ̄ +

√
i

4
(∂xφ)2 ∂2

xφ ψ̄

+
3

8
(∂xφ)4 ψ̄, (E.9)

b33 = 2λ5/2 − iλ3/2ψ̄∂xψ̄ + iλ1/2

(
(∂xφ)2 ψ̄∂xψ̄ +

1

4
∂xψ̄∂

2
xψ̄ −

1

4
ψ̄∂3

xψ̄

)
. (E.10)



Appendix F

Coefficients of the Bäcklund
transformations for N = 5 member

The coefficients ci in Bäcklund equations (4.30) are given by,

c0 = −∂4
xφ+ cosh

(φ+

2

)
+
(
∂2
xφ+

)2
sinh

(φ+

2

)
+ 3

(
∂3
xφ+

)
(∂xφ+) sinh

(φ+

2

)
+
(
∂2
xφ+

)
(∂xφ+)

2
cosh

(φ+

2

)
− 3

4
(∂xφ+)

4
sinh

(φ+

2

)
, (F.1)

c1 = ∂3
xφ+ cosh

(φ+

2

)
− (∂xφ+)

3
cosh

(φ+

2

)
+ 4

(
∂2
xφ+

)
(∂xφ+) sinh

(φ+

2

)
, (F.2)

c2 = −
(
∂2
xφ+

)
cosh

(φ+

2

)
+ 2 (∂xφ+)

2
sinh

(φ+

2

)
, (F.3)

c3 = ∂xφ+ cosh
(φ+

2

)
, (F.4)

c4 = −2 sinh
(φ+

2

)
, (F.5)

c5 = 4
(
∂4
xφ+

)
coshφ+ − 6

(
∂2
xφ+

)
(∂xφ+)

2
coshφ+ + 2

(
∂2
xφ+

)2
sinhφ+

−4
(
∂3
xφ+

)
(∂xφ+) sinhφ+ +

3

2
(∂xφ+)

4
sinhφ+, (F.6)

c6 = 4
(
∂2
xφ+

)
coshφ+ − 4 (∂xφ+)

2
sinhφ+, (F.7)

c7 = 2(∂xφ+)(coshφ+), (F.8)

c8 = 2 sinhφ+, (F.9)

c9 =

[
−20 cosh

(
φ+

2

)
+ 20 cosh

(
3φ+

2

)
+ 80 cosh

(
5φ+

2

)]
(∂2
xφ+)

+

[
35 sinh

(
φ+

2

)
− 15

2
sinh

(
3φ+

2

)
+

75

2
sinh

(
5φ+

2

)]
(∂xφ+)2, (F.10)

c10 =

[
70 cosh

(
φ+

2

)
− 25 cosh

(
3φ+

2

)
+ 35 cosh

(
5φ+

2

)]
∂xφ+, (F.11)

c11 = −20 sinh

(
φ+

2

)
+ 10 sinh

(
3φ+

2

)
+ 30 sinh

(
5φ+

2

)
, (F.12)

c12 = 40∂2
xφ+ (coshφ+ − cosh(3φ+))− 20(∂xφ+)2 (5 sinhφ+ + sinh(3φ+)) , (F.13)

c13 = 30 sinhφ+ − 10 sinh(3φ+), (F.14)

c14 = −120 sinh

(
φ+

2

)
+ 80 sinh

(
3φ+

2

)
+ 240 sinh

(
5φ+

2

)
− 60 sinh

(
7φ+

2

)
−100 sinh

(
9φ+

2

)
, (F.15)

c15 = 240 sinhφ+ − 120 sinh(3φ+) + 24 sinh(5φ+). (F.16)
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And the coefficients gj in the Bäcklund equations (4.31) are the following,

g0 =
[
− 1

2
(∂2
xφ+)2 − 3

2
(∂3
xφ+)(∂xφ+) +

3

8
(∂xφ+)4

]
cosh

(φ+

2

)
+
[1

2
∂4
xφ+ −

1

2
(∂2
xφ+)(∂xφ+)2

]
sinh

(φ+

2

)
, (F.17)

g1 =

[
−1

2
∂3
xφ+ +

1

2
(∂xφ+)3

]
sinh

(φ+

2

)
− 2(∂2

xφ+)(∂xφ+) cosh
(φ+

2

)
, (F.18)

g2 =
1

2
(∂2
xφ+) sinh

(φ+

2

)
− (∂xφ+)2 cosh

(φ+

2

)
, (F.19)

g3 = −1

2
∂xφ+ sinh

(φ+

2

)
, (F.20)

g4 = cosh
(φ+

2

)
, (F.21)

g5 = [10 sinhφ+ − 5 sinh(2φ+)] ∂xφ+, (F.22)

g6 = −
[

5

2
+ 20 coshφ+ +

35

2
cosh(2φ+)

]
(∂2
xφ+)(∂xφ+)

− [10 sinhφ+ + 5 sinh(2φ+)] ∂3
xφ+ −

[
15

2
sinhφ+ +

15

4
sinh(2φ+)

]
(∂xφ+)3, (F.23)

g7 = −
[

35

2
cosh

(
φ+

2

)
+

45

4
cosh

(
3φ+

2

)
+

45

4
cosh

(
5φ+

2

)]
(∂xφ+)2

−
[
15 sinh

(
3φ+

2

)
+ 15 sinh

(
5φ+

2

)]
∂2
xφ+, (F.24)

g8 =

[
−15 sinh

(
φ+

2

)
− 45

2
sinh

(
3φ+

2

)
− 15

2
sinh

(
5φ+

2

)]
(∂xφ+), (F.25)

g9 = 10 cosh

(
φ+

2

)
− 5 cosh

(
3φ+

2

)
− 5 cosh

(
5φ+

2

)
, (F.26)

g10 = [−120 sinhφ+ − 40 sinh(2φ+) + 40 sinh(3φ+) + 20 sinh(4φ+)] ∂xφ+, (F.27)

g11 = 60 cosh

(
φ+

2

)
− 40 cosh

(
3φ+

2

)
− 40 cosh

(
5φ+

2

)
+ 10 cosh

(
7φ+

2

)
+10 cosh

(
9φ+

2

)
. (F.28)



Appendix G

R-matrices

The R-matrices are given by

R(u) = c(u)
∑
α6=α′

eαα ⊗ eαα + b(u)
∑

α6=β,β′
eαα ⊗ eββ

+

 e(u)
∑

α<β,α 6=β′
+ ē(u)

∑
α>β,α 6=β′

 eαβ ⊗ eβα +
∑
α,β

aαβ(u)eαβ ⊗ eα′β′ , (G.1)

where eαβ are the elementary d× d matrices, with d given by (7.1). Moreover,

c(u) = 2 sinh(u2 − 2η)
b(u) = 2 sinh(u2 )
e(u) = −2e−

u
2 sinh(2η)

×
{

cosh(u2 − κη) for A
(2)
2n , A

(2)
2n−1

sinh(u2 − κη) for B
(1)
n , C

(1)
n , D

(1)
n

, (G.2)

ē(u) = eue(u) ,

aαβ(u) =



2 sinh(u2 )×
{

cosh(u2 − (κ− 2)η) for A
(2)
2n , A

(2)
2n−1

sinh(u2 − (κ− 2)η) for B
(1)
n , C

(1)
n , D

(1)
n

α = β, α 6= α′

b(u) +

{
2 sinh(2η) sinh((2n− 1)η) for B

(1)
n

−2 sinh(2η) cosh((2n+ 1)η) for A
(2)
2n

α = β, α = α′

2 sinh(2η)e∓
u
2 ×



∓εαεβe(±κ+2(ᾱ−β̄))η sinh(u2 )

−δαβ′ cosh(u2 − κη) for A
(2)
2n , A

(2)
2n−1

εαεβe
(±κ+2(ᾱ−β̄))η sinh(u2 )

−δαβ′ sinh(u2 − κη) for B
(1)
n , C

(1)
n , D

(1)
n

α<>β

(G.3)

where

κ =



2n for A
(2)
2n−1

2n+ 1 for A
(2)
2n

2n− 1 for B
(1)
n

2n+ 2 for C
(1)
n

2n− 2 for D
(1)
n

, (G.4)

εα =

{
1 for 1 ≤ α ≤ n
−1 for n+ 1 ≤ α ≤ 2n

for A
(2)
2n−1 , C

(1)
n

εα = 1 for A
(2)
2n , B

(1)
n , D(1)

n (G.5)
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ᾱ =

{
α− 1

2 1 ≤ α ≤ n
α+ 1

2 n+ 1 ≤ α ≤ 2n for A
(2)
2n−1 , C

(1)
n

ᾱ =


α+ 1

2 1 ≤ α < d+1
2

α α = d+1
2

α− 1
2

d+1
2 < α ≤ d for A

(2)
2n , B

(1)
n , D

(1)
n

(G.6)

α′ = d+ 1− α ,
α, β = 1 , . . . , d . (G.7)

All but one of these R-matrices are the same as in [56], up to the change of variables x = eu , k = e2η and

an overall factor. The one exception is the R-matrix for A
(2)
2n−1, which we obtain from the C

(1)
n R-matrix in

[56] by replacing ξ = k2n+2 by ξ = −k2n; i.e. by changing ξ 7→ −ξk−2. It is the same as the A
(2)
2n−1 R-matrix

in the appendix of [58] up to some redefinitions of the anisotropy and spectral parameters, and an overall

factor. This A
(2)
2n−1 R-matrix was used in [69, 85, 87].

We use the D
(2)
n+1 R-matrix given by Jimbo [56], except we use the variables u and η instead of x and k,

respectively, which are related as follows:

x = eu , k = e2η . (G.8)

We also multiply the Jimbo R-matrix by an overall factor e−2u e−2(n+1)η in order to have nice crossing and
unitarity properties. (See also [97, 57].) Hence, this R-matrix is given by

R(u) = e−2u e−2(n+1)ηRJ(u) (G.9)

with

RJ(u) =
(
e2u − e4η

) (
e2u − e4nη

) ∑
α6=n+1,n+2

eαα ⊗ eαα + e2η
(
e2u − 1

) (
e2u − e4nη

) ∑
α6=β,β′

α or β 6=n+1,n+2

· eαα ⊗ eββ −
(
e4η − 1

) (
e2u − e4nη

) ∑
α<β,α 6=β′

α,β 6=n+1,n+2

+e2u
∑

α>β,α 6=β′
α,β 6=n+1,n+2

 eαβ ⊗ eβα

− 1

2

(
e4η − 1

) (
e2u − e4nη

)(
(eu + 1)

 ∑
α<n+1,β=n+1,n+2

+eu
∑

α>n+2,β=n+1,n+2


· (eαβ ⊗ eβα + eβ′α′ ⊗ eα′β′) + (eu − 1)

− ∑
α<n+1,β=n+1,n+2

+eu
∑

α>n+2,β=n+1,n+2


· (eαβ ⊗ eβ′α + eβ′α′ ⊗ eα′β)

)
+

∑
α,β 6=n+1,n+2

aαβ(u)eαβ ⊗ eα′β′ +
1

2

∑
α 6=n+1,n+2,β=n+1,n+2

·
(
b+α (u) (eαβ ⊗ eα′β′ + eβ′α′ ⊗ eβα) + b−α (u) (eαβ ⊗ eα′β + eβα′ ⊗ eβα)

)
+

∑
α=n+1,n+2

(
c+(u)eαα ⊗ eα′α′ + c−(u)eαα ⊗ eαα

+ d+(u)eαα′ ⊗ eα′α + d−(u)eαα′ ⊗ eαα′
)
, (G.10)

where for α, β 6= n+ 1, n+ 2

aαβ(u) =


(e4ηe2u − e4nη)(e2u − 1) α = β

(e4η − 1)(e4nηe2η(ᾱ−β̄)(e2u − 1)− δαβ′(e2u − e4nη)) α < β

(e4η − 1)e2u(e2η(ᾱ−β̄)(e2u − 1)− δαβ′(e2u − e4nη)) α > β

, (G.11)

b±α (u) =

{
±e2η(α−1/2)(e4η − 1)(e2u − 1)(eu ± e2nη) α < n+ 1

e2η(α−n−5/2)(e4η − 1)(e2u − 1)eu(eu ± e2nη) α > n+ 2
, (G.12)

c±(u) = ±1

2
(e4η − 1)(e2nη + 1)eu(eu ∓ 1)(eu ± e2nη) + e2η(e2u − 1)(e2u − e4nη) , (G.13)
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d±(u) = ±1

2
(e4η − 1)(e2nη − 1)eu(eu ± 1)(eu ± e2nη) , (G.14)

and

ᾱ =


α+ 1 1 ≤ α < n+ 1

n+ 3
2 α = n+ 1

n+ 3
2 α = n+ 2

α− 1 n+ 2 < α ≤ 2n+ 2

, (G.15)

α′ = 2n+ 3− α . (G.16)

The elementary matrices eαβ have dimension (2n+ 2)× (2n+ 2) with

α, β = 1, . . . , 2n+ 2 . (G.17)
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Appendix H

Uq(g
(l))⊗ Uq(g

(r)) and T̃±(p)

We show here that the asymptotic gauge-transformed monodromy matrix T̃±(p) (7.37) can be expressed
in terms of coproducts of the generators of a QG of the form Uq(g

(l)) ⊗ Uq(g(r)), where g(l) and g(r) are
(non-affine) simple Lie algebras of type B, C or D, with rank n − p and p, respectively. Specifically, the
pairs of algebras (g(l), g(r)) are given in Table H.1, where ĝ is the affine Lie algebra in the list (7.4) that is
associated to the R-matrix. The algebras g(l)⊕g(r) are in fact the subalgebras of ĝ obtained by removing the
pth node from the (extended) Dynkin diagram of ĝ, which has n+ 1 nodes. We emphasize that the possible
values of p are 0, 1, . . . , n; it is understood that the “right” algebra g(r) is absent for p = 0, while the “left”
algebra g(l) is absent for p = n.

ĝ (g(l), g(r))

A
(2)
2n (Bn−p, Cp)

A
(2)
2n−1 (Cn−p, Dp) (p 6= 1)

B
(1)
n (Bn−p, Dp) (n > 1, p 6= 1)

C
(1)
n (Cn−p, Cp)

D
(1)
n (Dn−p, Dp) (n > 1, p 6= 1, n− 1)

Table H.1: Pairs of Lie algebras (g(l), g(r)) corresponding to the affine Lie algebras ĝ, where p = 0, 1, . . . , n.

H.1 Generators

We denote the generators corresponding to the simple roots of g(l) and g(r) by

H
(l)
i (p) , E

± (l)
i (p) , i = 1, . . . , n− p ,

and
H

(r)
i (p) , E

± (r)
i (p) , i = 1, . . . , p ,

respectively. (To lighten the notation, we shall refrain from displaying the dependence of these generators on
p when there is no ambiguity in so doing.) The “left” generators satisfy the commutation relations[

H
(l)
i (p) , H

(l)
j (p)

]
= 0 ,[

H
(l)
i (p) , E

± (l)
j (p)

]
= ±α(j)

i E
± (l)
j (p) ,[

E
+ (l)
i (p) , E

− (l)
j (p)

]
= δi,j

n−p∑
k=1

α
(j)
k H

(l)
k (p) , (H.1)

and the “right” generators similarly satisfy the commutation relations[
H

(r)
i (p) , H

(r)
j (p)

]
= 0 ,[

H
(r)
i (p) , E

± (r)
j (p)

]
= ±α(j)

i E
± (r)
j (p) ,[

E
+ (r)
i (p) , E

− (r)
j (p)

]
= δi,j

p∑
k=1

α
(j)
k H

(r)
k (p) . (H.2)
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Moreover, the “left” and “right” generators commute with each other

[
H

(l)
i (p) , E

± (r)
j (p)

]
=
[
E
± (l)
i (p) , H

(r)
j (p)

]
=
[
E
± (l)
i (p) , E

± (r)
j (p)

]
=
[
E
± (l)
i (p) , E

∓ (r)
j (p)

]
= 0 . (H.3)

The simple roots {α(1), . . . , α(m)} (where m is either n− p or p) in the orthogonal basis are given by

α(j) = ej − ej+1 , j = 1, . . . ,m− 1 ,

α(m) =

 em for Bm
2em for Cm
em−1 + em for Dm

, (H.4)

where ej are the elementarym-dimensional basis vectors (ej)i = δi,j (i.e., e1 = (1, 0, 0, . . . , 0) , e2 = (0, 1, 0, . . . , 0),
etc.).

In terms of the ĝ generators1

Hi = ei,i − ed+1−i,d+1−i , i = 1, . . . , n ,

E+
i = ei,i+1 + ed−i,d+1−i , i = 1, . . . , n− 1 ,

E+
n =


en,n+1 + ed−n,d+1−n if g(l) = Bn−p i.e., for A

(2)
2n , B

(1)
n√

2en,n+1 if g(l) = Cn−p i.e., for A
(2)
2n−1 , C

(1)
n

en−1,n+1 + en,n+2 if g(l) = Dn−p i.e., for D
(1)
n

,

E+
0 =

{ √
2ed,1 if g(r) = Cp i.e., for A

(2)
2n , C

(1)
n

ed−1,1 + ed,2 if g(r) = Dp i.e., for A
(2)
2n−1 , B

(1)
n , D

(1)
n

,

E−i = (E+
i )t , i = 0, 1, . . . , n , (H.5)

the “left and “right” generators are given by

H
(l)
i (p) = Hp+i ,

E
± (l)
i (p) = E±p+i , i = 1, . . . , n− p , (H.6)

and

H
(r)
i (p) = −Hp+1−i ,

E
± (r)
i (p) = E±p−i , i = 1, . . . , p , (H.7)

respectively. Indeed, one can check that the commutation relations (H.1) - (H.3) are satisfied. Note that the
“broken” generators E±p in (H.5) do not belong to either the “left” (H.6) or “right” (H.7) set of generators;

indeed, dropping the ĝ generators E±p corresponds to deleting the pth node from the (extended) Dynkin
diagram of ĝ.

H.2 Coproducts

We now present the coproducts for the quantum groups Uq(g
(l)) and Uq(g

(r)).

1Note that eij are the elementary d× d matrices introduced below (7.3), where d is defined in (7.1). We see from (H.6) that

the generators in (H.5) with i = 1, . . . , n are in fact the generators of g(l) with p = 0; and we see from (H.7) that E±
0 in (H.5)

are the nth generators of g(r) with p = n.
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H.2.1 “Left” generators

The coproducts for the “left” generators are given by

∆(H
(l)
j ) = H

(l)
j ⊗ I + I⊗H(l)

j , j = 1, . . . , n− p ,

∆(E
± (l)
j ) = E

± (l)
j ⊗ e(η+iπ)H

(l)
j −ηH

(l)
j+1 + e−(η+iπ)H

(l)
j +ηH

(l)
j+1 ⊗ E± (l)

j , j = 1, . . . , n− p− 1 ,

∆(E
± (l)
n−p ) =



E
± (l)
n−p ⊗ e(η+iπ)H

(l)
n−p

+e−(η+iπ)H
(l)
n−p ⊗ E± (l)

n−p if g(l) = Bn−p i.e., for A
(2)
2n , B

(1)
n

E
± (l)
n−p ⊗ e2ηH

(l)
n−p + e−2ηH

(l)
n−p ⊗ E± (l)

n−p if g(l) = Cn−p i.e., for A
(2)
2n−1 , C

(1)
n

E
± (l)
n−p ⊗ eηH

(l)
n−p−1+(η+iπ)H

(l)
n−p

+e−ηH
(l)
n−p−1−(η+iπ)H

(l)
n−p ⊗ E± (l)

n−p if g(l) = Dn−p i.e., for D
(1)
n

. (H.8)

These coproducts satisfy [
∆(H

(l)
i ) ,∆(E

± (l)
j )

]
= ±α(j)

i ∆(E
± (l)
j ) , (H.9)

and

Ω
(l)
ij ∆(E

+ (l)
i )∆(E

− (l)
j )−∆(E

− (l)
j )∆(E

+ (l)
i )Ω

(l)
ij (H.10)

=


δi,j

sinh
[
2η
∑n−p
k=1 α

(j)
k ∆(H

(l)
k )
]

sinh(2η) for A
(2)
2n , B

(1)
n , D

(1)
n

δi,j(1 + δi,n−p)
sinh

[
2η
∑n−p
k=1 α

(j)
k ∆(H

(l)
k )
]

sinh(2(1+δi,n−p)η) for A
(2)
2n−1 , C

(1)
n

, (H.11)

where Ω
(l)
ij is given by

Ω
(l)
ij =



{
e
iπH

(l)

max(i,j) ⊗ I |i− j| = 1

I⊗ I otherwise
for A

(2)
2n , B

(1)
n

{
e
iπH

(l)

max(i,j) ⊗ I |i− j| = 1 and 1 ≤ min(i, j) ≤ n− p− 2

I⊗ I otherwise
for A

(2)
2n−1 , C

(1)
n , D

(1)
n

. (H.12)

H.2.2 “Right” generators

The coproducts for the “right” generators are given by

∆(H
(r)
j ) = H

(r)
j ⊗ I + I⊗H(r)

j , j = 1, . . . , p ,

∆(E
± (r)
j ) = E

± (r)
j ⊗ e(η+iπ)H

(r)
j −ηH

(r)
j+1 + e−(η+iπ)H

(r)
j +ηH

(r)
j+1 ⊗ E± (r)

j , j = 1, . . . , p− 1 ,

∆(E± (r)
p ) =


E
± (r)
p ⊗ e2ηH(r)

p + e−2ηH(r)
p ⊗ E± (r)

p if g(r) = Cp i.e., for A
(2)
2n , C

(1)
n

E
± (r)
p ⊗ e(η+iπ)H

(r)
p−1+ηH(r)

p

+e−(η+iπ)H
(r)
p−1−ηH

(r)
p ⊗ E± (r)

p if g(r) = Dp i.e., for A
(2)
2n−1 , B

(1)
n , D

(1)
n

. (H.13)

These coproducts satisfy [
∆(H

(r)
i ) ,∆(E

± (r)
j )

]
= ±α(j)

i ∆(E
± (r)
j ) , (H.14)

and

Ω
(r)
ij ∆(E

+ (r)
i )∆(E

− (r)
j )−∆(E

− (r)
j )∆(E

+ (r)
i )Ω

(r)
ij (H.15)

=


δi,j

sinh
[
2η
∑p
k=1 α

(j)
k ∆(H

(r)
k )

]
sinh(2η) for A

(2)
2n−1, B

(1)
n , D

(1)
n

δi,j(1 + δi,p)
sinh

[
2η
∑p
k=1 α

(j)
k ∆(H

(r)
k )

]
sinh(2(1+δi,p)η) for A

(2)
2n , C

(1)
n

, (H.16)
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where Ω
(r)
ij is given by

Ω
(r)
ij =



{
e
iπH

(r)

max(i,j) ⊗ I |i− j| = 1 and 1 ≤ min(i, j) ≤ p− 2 and i 6= p

I⊗ I otherwise
for A

(2)
2n , C

(1)
n ,


e
iπH

(r)

max(i,j) ⊗ I |i− j| = 1 and 1 ≤ min(i, j) ≤ p− 2,

e
iπ
(
H

(r)
i +H

(r)
j

)
⊗ I |i− j| = 2 and (i = p or j = p)

I⊗ I otherwise

for A
(2)
2n−1 , B

(1)
n , D

(1)
n

. (H.17)

H.3 T̃±(p)

The matrix elements of the asymptotic gauge-transformed monodromy matrix T̃±(p) (7.37) can be expressed
in terms of the coproducts of the “left” and “right” generators introduced above. We now exhibit a set of ma-

trix elements T̃+
ij (p) that includes all ∆(N)(E

+ (l)
1 ) , . . . ,∆(N)(E

+ (l)
n−p ) and all ∆(N)(E

+ (r)
1 ) , . . . ,∆(N)(E

+ (r)
p ).

For j 6= n and for all the considered affine algebras, we find that

T̃+
j+1,j(p) =


−ψ e(η+iπ)∆(N)(H

(r)
p−j)+η∆(N)(H

(r)
p−j+1)∆(N)(E

+ (r)
p−j ) j = 1, ..., p− 1

0 j = p

ψ e(−η+iπ)∆(N)(H
(l)
j−p)−η∆(N)(H

(l)
j−p+1)∆(N)(E

+ (l)
j−p ) j = p+ 1, ..., n− 1

, (H.18)

where

ψ =
e−(κN−1)η

2N−1
sinh(2η) . (H.19)

The set of matrix elements {T̃+
2,1(p) , . . . , T̃+

n,n−1(p)} evidently contains all the generators except ∆(N)(E
+ (r)
p )

and ∆(N)(E
+ (l)
n−p ).

For the p-th “right” generator ∆(N)(E
+ (r)
p ) we have

T̃+
1,σ(n)(p) =



0 p = 0

− 2√
2
ψeη cosh(2η)∆(N)(E

+ (r)
p ) p = 1, ..., n for g(r) = Cp

i.e., for A
(2)
2n , C

(1)
n

ψe(−η+iπ)∆(N)(H
(r)
p−1)+η∆(N)(H

(r)
p )∆(N)(E

+ (r)
p ) p = 2, ..., n for g(r) = Dp

i.e., for A
(2)
2n−1 , B

(1)
n , D

(1)
n

(H.20)

where

σ(n) =


2n− 1 for A

(2)
2n−1 , D

(1)
n

2n for B
(1)
n , C

(1)
n

2n+ 1 for A
(2)
2n

. (H.21)

For the (n− p)-th “left” generator ∆(N)(E
+ (l)
n−p ) we have (for p = 0, 1, . . . , n− 1)

T̃+
n+1,σ̄(n)(p) =



ψe(−η+iπ)∆(N)(H
(l)
n−p)∆(N)(E

+ (l)
n−p ) for g(l) = Bn−p

i.e., for A
(2)
2n , B

(1)
n

− 2√
2
ψeη cosh(2η)∆(N)(E

+ (l)
n−p ) for g(l) = Cn−p

i.e., for A
(2)
2n−1 , C

(1)
n

−ψe−η∆(N)(H
(l)
n−p−1)+(η+iπ)∆(N)(H

(l)
n−p)∆(N)(E

+ (l)
n−p ) p 6= n, n− 1 for g(l) = Dn−p

i.e., for D
(1)
n

, (H.22)

where

σ̄(n) =

{
n for A

(2)
2n , A

(2)
2n−1 , B

(1)
n , C

(1)
n

n− 1 for D
(1)
n

. (H.23)

Similar expressions can be found for T̃−ij (p) in terms of ∆(N)(E
− (l)
1 ) , . . . ,∆(N)(E

− (l)
n−p ) and

∆(N)(E
− (r)
1 ) , . . . ,∆(N)(E

− (r)
p ).



Appendix I

The Hamiltonian

The transfer matrix (7.20) contains [52] the Hamiltonian H(p) ∼ t′(0, p). More explicitly, using the regularity
properties

R(0) = ξ(0)P ,
KR(0, p) = I , (I.1)

one obtains

H(p) =

N−1∑
k=1

hk,k+1 +
1

2
KR ′

1 (0, p) +
1

trKL(0, p)
traK

L
a (0, p)hNa , (I.2)

where the two-site Hamiltonian hk,k+1 is given by

hk,k+1 =
1

ξ(0)
Pk,k+1R

′
k,k+1(0) . (I.3)

The Hamiltonian is gauge invariant [53]

H(p) =

N−1∑
k=1

h̃k,k+1(p) +
1

2
K̃R ′

1 (0, p) +
1

tr K̃L(0, p)
tra K̃

L
a (0, p)h̃Na , (I.4)

where the gauge-transformed two-site Hamiltonian is given by

h̃k,k+1(p) =
1

ξ(0)
Pk,k+1R̃

′
k,k+1(0, p)

= hk,k+1 +B′k+1(0, p)−B′k(0, p) , (I.5)

where we have used the definition (7.24) of the gauge-transformed R-matrix to pass to the second line.

I.1 Special cases

For the special case with p = 0, the K-matrix KR(u, 0) is proportional to the identity matrix (7.17). It
follows1 that only the first term in (I.2) contributes [65]

H(0) =

N−1∑
k=1

hk,k+1 . (I.6)

Similarly, for the special case with p = n and d = 2n, the gauge-transformed K-matrix K̃R(u, n) is
proportional to the identity matrix, see (7.27). Hence, only the first term in (I.4) contributes

H(n) =

N−1∑
k=1

h̃k,k+1(n) (d = 2n) . (I.7)

This explains the observation in [87] that the Hamiltonian for this case is given by a sum of two-body terms.
A similar result holds for the special case with p = n and d = 2n+ 1 [86].

1Indeed, the second term in (I.2) is evidently proportional to the identity matrix; moreover, using an identity from [65, 86, 87],
one can show that the third term in (I.2) is also proportional to the identity matrix.
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Appendix J

Proofs of four lemmas

We outline here proofs of Lemmas 1, 5, 9 and 13 for any value of n. For all of these proofs, it is useful to
rewrite the R-matrix (G.1) as follows

R(u) = c(u)R(1) + b(u)R(2) + e(u)R(3) + ē(u)R(4) +R(5)(u) , (J.1)

where

R(1) =
∑
α 6=α′

eαα ⊗ eαα =
∑
α

eαα ⊗ eαα − en+1,n+1 ⊗ en+1,n+1 (1− δd,2n), (J.2)

R(2) =
∑

α 6=β,β′
eαα ⊗ eββ =

∑
α,β

eαα ⊗ eββ −
∑
β 6=β′

eββ ⊗ eββ −
∑
β

eβ′β′ ⊗ eββ , (J.3)

R(3) =
∑

α<β,α 6=β′
eαβ ⊗ eβα =

∑
α<β

eαβ ⊗ eβα −
∑

β> d+1
2

eβ′β ⊗ eββ′ , (J.4)

R(4) =
∑

α>β,α 6=β′
eαβ ⊗ eβα =

∑
α>β

eαβ ⊗ eβα −
∑

β< d+1
2

eβ′β ⊗ eββ′ , (J.5)

R(5)(u) =
∑
α,β

aαβ(u) eαβ ⊗ eα′β′ . (J.6)

We follow a similar basic strategy for all the proofs: express all the matrices in terms of the elementary
matrices eij and the identity matrix I, perform the matrix products using the identity

eij ekl = δjk eil , (J.7)

and then effectuate the resulting Kronecker deltas. Since many terms are generated by this procedure, we
use the software Mathematica to perform the necessary algebra. Since the proofs are too long to present all
the details, we explain the main steps, and point out some of the subtleties. We start with the simplest proof
(Lemma 13), and then work our way to the most difficult one (Lemma 1).

J.1 Lemma 13

We wish to prove the relation

Z
(l)
1 R12(u)Z

(l)
1 = Z

(l)
2 R12(u)Z

(l)
2 (J.8)

for the D
(1)
n R-matrix. We begin by rewriting Z(l) (7.111) as

Z(l) = I− en,n − en+1,n+1 + en,n+1 + en+1,n . (J.9)

The relation (J.8) is in fact separately satisfied by each of the terms in the expression (J.1) for the R-matrix,
which we now discuss in turn.

J.1.1 R(1) and R(2)

Since we consider here only the D
(1)
n R-matrix, here d = 2n; therefore, the second term in (J.2) is absent.

For R(1) and R(2), the sums in α and β do not have any restriction of the type α < β or α > β; hence, it is
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straightforward to show using (J.7) that

Z
(l)
1 R(1) Z

(l)
1 = Z

(l)
2 R(1) Z

(l)
2 ,

Z
(l)
1 R(2) Z

(l)
1 = Z

(l)
2 R(2) Z

(l)
2 . (J.10)

J.1.2 R(3) and R(4)

These terms require much more effort. Let us start by considering the first term in R(3), and calculating

Z
(l)
1

∑
α<β

eαβ ⊗ eβα

Z
(l)
1 . (J.11)

Using the relation (J.7) we obtain an expression depending on Kronecker deltas. But we cannot directly
effectuate these Kronecker deltas to evaluate the sums because of the condition α < β. We can put terms
such as δn,β δn+1,α, δn,β δn,α and δn+1,β δn+1,α to zero, because they do not obey α < β. After doing this,
we remain with expressions such as ∑

α<β

en,β ⊗ eβ,α δn,α. (J.12)

Notice that we cannot simply set α = n in this expression. In order to satisfy the condition α < β, if α = n,
then β ∈ {n+ 1, ... , 2n}. Hence, we can rewrite (J.12) as

∑
α<β

en,β ⊗ eβ,α δn,α = en,n+1 ⊗ en+1,n +

2n∑
β=n+2

en,β ⊗ eβ,n, (J.13)

where we separate the term with β = n + 1 from the sum, since this helps to cancel with other terms. For
the same reason, we can rewrite

∑
α<β

en,β ⊗ eβ,α δn+1,α =

2n∑
β=n+2

en,β ⊗ eβ,n+1. (J.14)

Using similar logic with all of the terms, we obtain

Z
(l)
1

∑
α<β

eαβ ⊗ eβα

Z
(l)
1 − Z

(l)
2

∑
α<β

eαβ ⊗ eβα

Z
(l)
2 = e1+n,n ⊗ e1+n,n − en,1+n ⊗ en,1+n. (J.15)

We still must consider the contribution of the second term in R(3)

Z
(l)
1

− ∑
β> d+1

2

eβ′β ⊗ eββ′

Z
(l)
1 . (J.16)

Notice that, since d = 2n, the condition β > d+1
2 is equivalent to β ≥ n+ 1. Due to this condition, all terms

with δn,β and δn+1,2n+1−β must vanish. Taking this into account, we obtain

Z
(l)
1

− ∑
β> d+1

2

eβ′β ⊗ eββ′

Z
(l)
1 − Z

(l)
2

− ∑
β> d+1

2

eβ′β ⊗ eββ′

Z
(l)
2 = −e1+n,n ⊗ e1+n,n + en,1+n ⊗ en,1+n,

(J.17)
which exactly cancels with (J.15). We conclude that R(3) satisfies

Z
(l)
1 R(3) Z

(l)
1 = Z

(l)
2 R(3) Z

(l)
2 . (J.18)

We prove that R(4) satisfies

Z
(l)
1 R(4) Z

(l)
1 = Z

(l)
2 R(4) Z

(l)
2 (J.19)

using the same arguments presented for R(3), but considering α > β instead of α < β.
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J.1.3 R(5)(u)

For R(5)(u), there are no restrictions on the sums over α and β; hence, we can directly effectuate all the
Kronecker deltas. However, doing this is not enough to show that

Z
(l)
1

∑
α,β

aαβ(u) eαβ ⊗ eα′β′

Z
(l)
1 − Z

(l)
2

∑
α,β

aαβ(u) eαβ ⊗ eα′β′

Z
(l)
2 = 0 . (J.20)

To this end, it is useful to separate all the terms with α, β ∈ {n, n+ 1} from the sums. For example,

∑
β

an,β(u) en+1,β ⊗ en,β′ =an,n(u) en+1,n ⊗ en,n+1 + an,n+1(u) en+1,n+1 ⊗ en,n+

+

n−1∑
β=1

an,β(u) en+1,β ⊗ en,β′ +

2n∑
β=n+2

an,β(u) en+1,β ⊗ en,β′ . (J.21)

By doing this, we find that all the terms without sums cancel. The remaining terms can also be seen to

cancel by using the following properties of the functions aαβ(u) (G.3) for D
(1)
n

an,n = an+1,n+1,

an,n+1 = an+1,n,

an,β = an+1,β for 1 ≤ β ≤ n− 1 and for n+ 2 ≤ β ≤ 2n,

aβ,n = aβ,n+1 for 1 ≤ β ≤ n− 1 and for n+ 2 ≤ β ≤ 2n. (J.22)

We conclude that

Z
(l)
1 R(5)(u)Z

(l)
1 = Z

(l)
2 R(5)(u)Z

(l)
2 , (J.23)

which concludes the proof of (J.8).

J.2 Lemma 9

We now turn to the proof of the relations

Z
(r)
1 R12(u)Z

(r)
1 = Y t2 (u)R12(u)Y t2 (u) ,

Z
(r)
2 R12(u)Z

(r)
2 = Y1(u)R12(u)Y1(u) , (J.24)

for the A
(2)
2n−1, B

(1)
n and D

(1)
n R-matrices. We begin by rewriting Z(r) and Y (u) (7.100) as follows

Z(r) = I− e1,1 − ed,d + e1,d + ed,1 ,

Y (u) = I− e1,1 − ed,d + e−ue1,d + eued,1 . (J.25)

The rest of the proof is very similar to the one for Lemma 13 (J.8). However, whereas in the previous case
all the terms are written in such a way that α, β ∈ {n, n+ 1} appear explicitly and not inside the sums, here
we should write all the terms in such a way that α, β ∈ {1, d} appear explicitly. Another difference is that
now not all the terms in the expression (J.1) for the R-matrix separately satisfy the relations (J.24). Indeed,
the linear combination R(3) +euR(4) satisfies these relations, but not R(3) and R(4) separately. Otherwise, all
the intermediate strategies are analogous. At the end, we must use the following properties of the functions

aαβ(u) (G.3) for A
(2)
2n−1, B

(1)
n and D

(1)
n

a1,1 = ad,d,

ad,1 = e2u a1,d,

ad,β = eu a1,β for 2 ≤ β ≤ d− 1 ,

aβ,d = e−u aβ,1 for 2 ≤ β ≤ d− 1 . (J.26)
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J.3 Lemma 5

We now present some details about our proof of the duality relation

U2R12(u)U2 = W1(u)R12(u)W1(u) (J.27)

for the C
(1)
n and D

(1)
n R-matrices, for which d = 2n. In contrast with the previous proofs (J.9), (J.25), the

matrices U and W (u) (7.64) cannot be expressed in the form (I − few terms). We rewrite these matrices
instead as

U =

n∑
i=1

(ei,n+i + en+i,i) , (J.28)

and

W (u) =

n∑
i=1

(
e−

u
2 ei,n+i + e

u
2 en+i,i

)
. (J.29)

We now proceed to analyze separately the contributions of the terms in the expression (J.1) for the R-matrix
to the relation (J.27).

J.3.1 R(1) and R(2)

After applying the rule (J.7), we must deal with the ranges of the sums. The ranges for the sums in (J.28)
and (J.29) (from 1 to n) are different from the ones in (J.2) and (J.3) (from 1 to 2n). We cannot effectuate
the Kronecker deltas to evaluate the sums in R(1) unless we split those sums into two ranges: 1 ≤ α ≤ n and
n+ 1 ≤ α ≤ 2n. In (J.27) we write the U2 on the left hand side of R(1) with a sum in i, and the U2 on the
right hand side with a sum in j. For the range 1 ≤ α ≤ n, all the terms with δi+n,α and δj+n,α are zero,
because α is always smaller than n+ i. For n+ 1 ≤ α ≤ 2n, all the terms with δi,α and δj,α are zero, because
max(i) and max(j) are n, while α is always greater or equal to n + 1. After applying such arguments, we
obtain

U2R
(1) U2 =

n∑
α=1

eα,α ⊗ eα+n,α+n +

2n∑
α=n+1

eα,α ⊗ eα−n,α−n . (J.30)

By applying analogous arguments for the terms with W1(u), we find

W1(u)R(1)W1(u) =

n∑
α=1

eα+n,α+n ⊗ eα,α +

2n∑
α=n+1

eα−n,α−n ⊗ eα,α . (J.31)

We conclude that
U2R

(1) U2 = W1(u)R(1)W1(u) , (J.32)

since the right-hand-sides of (J.30) and (J.31) become identical upon redefining the α’s in the sums. We
prove in a similar way that R(2) satisfies

U2R
(2) U2 = W1(u)R(2)W1(u) . (J.33)

J.3.2 R(3) and R(4)

The duality relation is not satisfied separately by R(3) and R(4), but is instead satisfied by the linear combi-
nation R(3) + euR(4). That is,

U2

(
R(3) + euR(4)

)
U2 = W1(u)

(
R(3) + euR(4)

)
W1(u) . (J.34)

In order to manage the cases with α < β and α > β, we split the sums over α and β into four ranges:

1 ≤ α ≤ n and 1 ≤ β ≤ n ,
1 ≤ α ≤ n and n+ 1 ≤ β ≤ 2n ,

n+ 1 ≤ α ≤ 2n and 1 ≤ β ≤ n ,
n+ 1 ≤ α ≤ 2n and n+ 1 ≤ β ≤ 2n . (J.35)

For each of these ranges, we put to zero terms that contain Kronecker deltas where α and β are outside of
the relevant interval. Again, at the end, it is necessary to redefine α and β on the sums to see that (J.34) is
satisfied.
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J.3.3 R(5)(u)

For this term we also split the sums over α and β into the four ranges (J.35). All the other strategies are
similar to the ones presented above, and we obtain

U2R
(5)(u)U2 = W1(u)R(5)(u)W1(u) . (J.36)

J.4 Lemma 1 for d = 2n

In order to prove [
R̃+

12(p) , K̃R
2 (u, p)

]
= 0 (J.37)

for any value of n, we proceed in three steps: finding an explicit expression for the gauge-transformed R-
matrix R̃12(u, p), performing the limit u → ∞ in e−u R̃12(u, p) to obtain R̃+

12(p), and finally evaluating the
commutator. We consider here the case d = 2n, leaving the case d = 2n+ 1 for the following subsection.

J.4.1 Finding R̃12(u, p)

In order to obtain an explicit expression for the gauge-transformed R-matrix R̃12(u, p) (7.24), it is useful to
rewrite B(u) (7.26) in terms of elementary matrices

B(u) = e
u
2

p∑
i=1

ei,i +

n∑
i=p+1

ei,i +

2n−p∑
i=n+1

ei,i + e−
u
2

2n∑
i=2n−p+1

ei,i , (J.38)

for 1 ≤ p ≤ n− 1.1

We now point out some useful simplifications for the contributions from each of the terms in the expression
(J.1) for the R-matrix.

Since B(u) is a diagonal matrix,

B1(u)R(1)B1(−u) = R(1) , (J.39)

B1(u)R(2)B1(−u) = R(2) . (J.40)

Let us now consider the first term in B1(u)R(3)B1(−u), where α < β. After applying the rule (J.7), we
obtain terms such as ∑

α<β

2n∑
i=2n−p+1

2n−p∑
j=n+1

ei,j ⊗ eβ,α δi,α δj,β , (J.41)

for example. Several terms like this appear, but they are all equal to zero, because the δ’s force α = i and β =
j; but i > j in this sum, which contradicts the condition α < β. For the second term in B1(u)R(3)B1(−u),
several terms are zero because the Kronecker deltas force β to have values that are not greater than d+1

2 .

Similar arguments can be used for B1(u)R(4)B1(−u).

For B1(u)R(5)(u)B1(−u), after applying the rule (J.7), we can directly use the δ’s to evaluate the sums,
because there are no restrictions on the α’s and β’s. The functions ai,j(u) have different expressions depending
on whether i = j, i < j or i > j. For later convenience, we separately calculate the contributions from each
of these three cases. For example, consider the term

2n∑
i=2n−p+1

p∑
j=1

ai,j(u) ei,j ⊗ ei′,j′ . (J.42)

This term contributes only to i > j, due to the ranges in the sums and the fact 2n− p+ 1 > p.

We refrain from displaying the final result for R̃12(u, p), which is quite lengthy even after the simplifications
noted above.

1For p = 0 and p = n, K̃R(u, p) ∝ I, so (J.37) is trivially satisfied.
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J.4.2 Performing the large-u limit

We now proceed to perform the limit u→∞ in e−u R̃12(u, p). To this end, we need the following results

lim
u→∞

e−ue(u) = 0 = lim
u→∞

e−
u
2 e(u) = lim

u→∞
e−

3u
2 ē(u) = lim

u→∞
e−2uē(u),

lim
u→∞

e−ua
(3)
αβ(u) = 0 = lim

u→∞
e−

u
2 a

(3)
αβ(u) = lim

u→∞
e−2ua

(4)
αβ(u) = lim

u→∞
e−

3u
2 a

(4)
αβ(u),

b ≡ lim
u→∞

e−ub(u) =
1

2
e−κη,

c ≡ lim
u→∞

e−uc(u) =
1

2
e−(κ+2)η,

e ≡ lim
u→∞

e(u) = −e−κη sinh(2η) = lim
u→∞

e−uē(u),

a(1) ≡ lim
u→∞

e−ua
(1)
αβ(u) =

1

2
e−(κ−2)η,

a(2) ≡ lim
u→∞

e−ua
(2)
αβ(u) =

1

2
e−κη

a
(3)
α,β ≡ lim

u→∞
a

(3)
αβ(u) = e−κη sinh(2η)

(
δ2
1e

2(κ+ᾱ−β̄)ηεαεβ − δα,β′
)
,

a
(4)
α,β ≡ lim

u→∞
e−ua

(4)
αβ = e−κη sinh(2η)

(
e2(ᾱ−β̄)ηεαεβ − δα,β′

)
, (J.43)

where

aα,β(u) =


a

(1)
α,β(u) for α = β, α 6= α′

a
(2)
α,β(u) for α = β, α = α′

a
(3)
α,β(u) for α < β

a
(4)
α,β(u) for α > β

, (J.44)

and the definition of a
(i)
α,β(u) can be read off directly from (G.3).

With the help of these results, we find that R̃+
12(p) (7.36) is given, for d = 2n and 1 ≤ p ≤ n− 1, by

R̃+
12(p) = c

∑
α

eα,α ⊗ eα,α + b
∑

α6=β,β′
eα,α ⊗ eβ,β − e

 n∑
β=p+1

+

2n∑
β=2n−p+1

 eβ′,β ⊗ eβ,β′

+ e

 p∑
α,β=1
α>β

+

n∑
α,β=p+1
α>β

+

2n−p∑
α,β=n+1
α>β

+

2n∑
α,β=2n−p+1

α>β

+

p∑
α=1

2n∑
β=2n−p+1

+

2n−p∑
α=n+1

n∑
β=p+1

 eα,β ⊗ eβ,α

+ a(1)
∑
α

eα,α ⊗ eα′,α′ +

p∑
α=1

2n∑
β=2n+1−p

a
(3)
α,β eα,β ⊗ eα′,β′

+

 p∑
α,β=1
α>β

+

n∑
α,β=p+1
α>β

+

2n−p∑
α,β=n+1
α>β

+

2n∑
α,β=2n−p+1

α>β

+

2n−p∑
α=n+1

n∑
β=p+1

 a
(4)
α,β eα,β ⊗ eα′,β′ . (J.45)

J.4.3 Evaluating the commutator

In order to evaluate the commutator (J.37), we rewrite K̃R(u, p) (7.27) in terms of elementary matrices, and
obtain

K̃R
2 (u, p) = I⊗

 p∑
i=1

+

(
γeu + 1

γ + eu

) n∑
i=p+1

+

(
γeu + 1

γ + eu

) 2n−p∑
i=n+1

+

2n∑
i=2n−p+1

 ei,i . (J.46)

It is then just a matter of applying the same ideas presented above, and putting to zero all the terms that
do not belong to the relevant range. In this way, one can see that each of the terms in (J.45) commutes with
(J.46).
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J.5 Lemma 1 for d = 2n+ 1

The cases where d = 2n+1 can be analogously proved. However, it is more suitable to separate the “middle”
terms in B(u) and K̃R

2 (u, p), i.e. we set

B(u) = e
u
2

p∑
i=1

ei,i +

n∑
i=p+1

ei,i + en+1,n+1 +

2n−p+1∑
i=n+2

ei,i + e−
u
2

2n+1∑
i=2n−p+2

ei,i (J.47)

and

K̃R
2 (u, p) = I⊗ en+1,n+1 + I⊗

 p∑
i=1

+

(
γeu + 1

γ + eu

) n∑
i=p+1

+

(
γeu + 1

γ + eu

) 2n−p+1∑
i=n+2

+

2n+1∑
i=2n−p+2

 ei,i , (J.48)

for 1 ≤ p ≤ n− 1. For this case, R̃+
12(p) is given by

R̃+
12(p) = c

∑
α6=α′

eα,α ⊗ eα,α + b
∑

α6=β,β′
eα,α ⊗ eβ,β − e

 2n+1∑
β=2n−p+2

+

n∑
β=p+1

 eβ′,β ⊗ eβ,β′

+ e

 p∑
α=1

2n+1∑
β=2n−p+2

+

p∑
α,β=1
α>β

+

n∑
α,β=p+1
α>β

+

2n−p+1∑
α,β=n+2
α>β

+

2n+1∑
α,β=2n−p+2

α>β

+

2n−p+1∑
α=n+2

n∑
β=p+1

 eα,β ⊗ eβ,α

+ a(1)

(
n∑
α=1

+

2n+1∑
α=n+2

)
eα,α ⊗ eα′,α′ +

p∑
α=1

2n+1∑
β=2n+2−p

a
(3)
α,β eα,β ⊗ eα′,β′

+

 p∑
α,β=1
α>β

+

n∑
α,β=p+1
α>β

+

2n−p+1∑
α,β=n+2
α>β

+

2n+1∑
α,β=2n−p+2

α>β

+

2n−p+1∑
α=n+2

n∑
β=p+1

 a
(4)
α,β eα,β ⊗ eα′,β′

+ a(2)en+1,n+1 ⊗ en+1,n+1 − e e2(n+1)η
n∑

β=p+1

e−2β̄ηen+1,β ⊗ en+1,β′

− e e−2(n+1)η

2n−p+1∑
β=n+2

e2β̄ηeβ,n+1 ⊗ eβ′,n+1

+ e

(
n∑

α=p+1

en+1,α ⊗ eα,n+1 +

2n−p+1∑
α=n+2

eα,n+1 ⊗ en+1,α

)
. (J.49)

For p = n, it is suitable to write B(u) and K̃R
2 (u, p) as

B(u) = e
u
2

n∑
i=1

ei,i + en+1,n+1 +

2n+1∑
i=n+2

ei,i , (J.50)

and

K̃R
2 (u, p) = I⊗ I− I⊗ en+1,n+1 +

(
γeu + 1

γ + eu

)
I⊗ en+1,n+1 . (J.51)

For this case, R̃+
12(p) is given by

R̃+
12(p) = c

∑
α6=α′

eα,α ⊗ eα,α + b
∑

α 6=β,β′
eα,α ⊗ eβ,β − e

2n+1∑
β=n+2

eβ′,β ⊗ eβ,β′

+ e

 n∑
α=1

2n+1∑
β=n+2

+

n∑
α,β=1
α>β

+

2n+1∑
α,β=n+2
α>β

 eα,β ⊗ eβ,α

+ a(1)

(
n∑
α=1

+

2n+1∑
α=n+2

)
eα,α ⊗ eα′,α′ + a(2) en+1,n+1 ⊗ en+1,n+1
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+

n∑
α=1

2n+1∑
β=n+2

a
(3)
α,β eα,β ⊗ eα′,β′ +

 n∑
α,β=1
α>β

+

2n+1∑
α,β=n+2
α>β

 a
(4)
α,β eα,β ⊗ eα′,β′ . (J.52)

For p = 0, K̃R(u, p) ∝ I, so (J.37) is trivially satisfied.



Appendix K

Bonus symmetry and singular
solutions

For the cases C
(1)
n , D

(1)
n , D

(2)
n+1 with p = n

2 (n even) and ε = 1, the transfer matrix has a “bonus” symmetry
(i.e., a symmetry in addition to self-duality), leading to higher degeneracies in comparison with ε = 0 [88, 89].
We observe here that the solutions of the Bethe equations corresponding to such degenerate levels are singular
(exceptional).

As an example, we consider the case C
(1)
n with n = 2, p = 1. From the Uq(C1)⊗Uq(C1) symmetry of the

transfer matrix, we expect (for generic values of η) the following Hilbert space decompositions

N = 2 : [(2,1)⊕ (1,2)]
⊗2

= 2(1,1)⊕ 2(2,2)⊕ (3,1)⊕ (1,3) , (K.1)

N = 3 : [(2,1)⊕ (1,2)]
⊗3

= 5(2,1)⊕ 5(1,2)⊕ 3(3,2)⊕ 3(2,3)⊕ (4,1)⊕ (1,4) . (K.2)

However, by diagonalizing the transfer matrix directly, we observe the following degeneracy patterns

N = 2 : {1, 1, 4, 4, 6} when ε = 0 , (K.3)

{2, 8, 6} when ε = 1 , (K.4)

N = 3 : {4, 4, 4, 4, 4, 8, 12, 12, 12} when ε = 0 , (K.5)

{4, 8, 8, 8, 12, 24} when ε = 1 . (K.6)

Let us first consider the case N = 2. Comparing the decomposition (K.1) with the degeneracies for ε = 0
(K.3), we see that they do not completely match: the (3,1) and (1,3) are degenerate (thereby giving rise
to the 6-fold degeneracy) due to the self-duality (8.13). However, the degeneracies for ε = 1 (K.4) are even
higher: the two (2,2) are degenerate (thereby giving rise to the 8-fold degeneracy) and the two (1,1) are
degenerate (thereby giving rise to the 2-fold degeneracy) due to the “bonus” symmetry.

The key new point is that, among the Bethe roots corresponding to the levels with 8-fold degeneracy and
2-fold degeneracy, is the exact Bethe root u[1] = 2η (which is repeated for the 2-fold degenerate level), for
which the Bethe equations have a zero or pole.

The bonus symmetry is also present for N = 3, see (K.2), (K.5), (K.6). The levels that are degenerate
due to the bonus symmetry (namely, the level with 24-fold degeneracy, and two levels with 8-fold degeneracy)
again contain the singular solution u[1] = 2η, which is repeated for the 8-fold degenerate levels.

For all the examples that we have checked (another example is noted in Sec. 8.3.3), singular solutions
occur if and only if the states are affected by the bonus symmetry. However, a general understanding of this
phenomenon is still lacking.
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Appendix L

Bethe ansatz solutions for some
additional cases

In the main part of this work, we do not consider the K-matrices (7.14) for the cases A
(2)
2n−1 and B

(1)
n with

p = 1, and D
(1)
n with p = 1 , n − 1, as emphasized in (8.5). These K-matrices are excluded because the

corresponding transfer matrices do not have QG symmetry corresponding to removing one node from the
Dynkin diagram. (This is the reason why we consider instead the K-matrices (8.6) and (8.7) for these cases.)
Nevertheless, the transfer matrices for these cases are integrable, and we have also determined their spectra.
We briefly note here the Bethe ansatz solutions for these cases.

For these cases (i.e., for the transfer matrices constructed using the K-matrices (7.14) for A
(2)
2n−1 and B

(1)
n

with p = 1, and for D
(1)
n with p = 1 , n− 1), the transfer matrix eigenvalues are in fact given by (8.21), where

the functions yl(u, p) are given by (8.41), (8.43), (8.44). Hence, the Bethe equations for A
(2)
2n−1, B

(1)
n and D

(1)
n

with p = 1 are again those in Sec. 8.2.3, with the functions Φl,p,n given by (8.76).

For D
(1)
n (n > 3) with p = n−1, the Bethe equations for l ≤ n−2 are the ones given in (8.51),(8.52),(8.60);

but the Bethe equations for l = n− 1, n are given bycosh

(
u

[n−1]
k

2 + η + iπε
2

)
cosh

(
u

[n−1]
k

2 − η + iπε
2

)


2

=
Q[n−2]

(
u

[n−1]
k − 2η

)
Q[n−2]

(
u

[n−1]
k + 2η

) Q[n−1]
k

(
u

[n−1]
k + 4η

)
Q

[n−1]
k

(
u

[n−1]
k − 4η

) , (L.1)

cosh

(
u

[n]
k

2 + η + iπε
2

)
cosh

(
u

[n]
k

2 − η + iπε
2

)


2

=
Q[n−2]

(
u

[n]
k − 2η

)
Q[n−2]

(
u

[n]
k + 2η

) Q[n]
k

(
u

[n]
k + 4η

)
Q

[n]
k

(
u

[n]
k − 4η

) , (L.2)

instead of by (8.61) and (8.62). In contrast with the QG-invariant case, the LHS of (L.2) has a nontrivial
(6= 1) factor, even though l = n 6= p.

121



122 APPENDIX L. BETHE ANSATZ SOLUTIONS FOR SOME ADDITIONAL CASES



Bibliography

[1] A. Das, (1989), “Integrable Models”, (World Scientific Lecture Notes in Physics - Vol. 30) World
Scientific.

[2] M.J. Ablowitz, P.A. Clarkson,( 1991) “Solitons, Nonlinear Evolution equations and Inverse Scattering”
(London Mathematical Society Lecture Note Series 149) Cambridge University Press.

[3] V.E. Zakharov (ed), (1991) “What is integrability?” (Springer Series in nonlinear dynamics)
Spring-Verlag.

[4] J. F. Gomes, G. Starvaggi Franca, G. R. de Melo and A. H. Zimerman, “Negative Even Grade mKdV
Hierarchy and its Soliton Solutions,” J. Phys. A42 (2009) 445204.

[5] L .D. Faddeev and L. A. Takhtajan, “Hamiltonian methods in the Theory of Solitons”, Springer-Verlag
(1987).

[6] P.P.Kulish and E.K.Sklyanin in Lect. Notes Phys. Vol. 151, Ed. J. Hietarinta et al, Springer-Verlag
(1982).

[7] O. Babelon, and D. Bernard, “Affine Solitons: A Relation Between Tau Functions, Dressing and
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