Show simple item record

dc.contributor.authorLlibre, Jaume
dc.contributor.authorLopes, Bruno D.
dc.contributor.authorDe Moraes, Jaime R. [UNESP]
dc.date.accessioned2014-12-03T13:11:09Z
dc.date.available2014-12-03T13:11:09Z
dc.date.issued2014-04-01
dc.identifierhttp://dx.doi.org/10.1007/s12346-014-0109-9
dc.identifier.citationQualitative Theory Of Dynamical Systems. Basel: Springer Basel Ag, v. 13, n. 1, p. 129-148, 2014.
dc.identifier.issn1575-5460
dc.identifier.urihttp://hdl.handle.net/11449/112912
dc.description.abstractWe study the maximum number of limit cycles that bifurcate from the periodic solutions of the family of isochronous cubic polynomial centers(x) over dot = y(-1 + 2 alpha x + 2 beta x(2)), (y) over dot = x + alpha(y(2) - x(2)) + 2 beta xy(2), alpha is an element of R, beta < 0,when it is perturbed inside the classes of all continuous and discontinuous cubic polynomial differential systems with two zones of discontinuity separated by a straight line. We obtain that this number is 3 for the perturbed continuous systems and at least 12 for the discontinuous ones using the averaging method of first order.en
dc.description.sponsorshipMINECO/FEDER
dc.description.sponsorshipAGAUR
dc.description.sponsorshipICREA Academia
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.format.extent129-148
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofQualitative Theory of Dynamical Systems
dc.sourceWeb of Science
dc.subjectPolynomial vector fielden
dc.subjectLimit cycleen
dc.subjectAveraging methoden
dc.subjectPeriodic orbiten
dc.subjectIsochronous centeren
dc.titleLimit Cycles for a Class of Continuous and Discontinuous Cubic Polynomial Differential Systemsen
dc.typeArtigo
dcterms.licensehttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dcterms.rightsHolderSpringer
dc.contributor.institutionUniv Autonoma Barcelona
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.description.affiliationUniv Autonoma Barcelona, Dept Matemat, Barcelona, Catalonia, Spain
dc.description.affiliationUniv Estadual Paulista, IBILCE, Dept Matemat, BR-15054000 Sao Paulo, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, IBILCE, Dept Matemat, BR-15054000 Sao Paulo, Brazil
dc.identifier.doi10.1007/s12346-014-0109-9
dc.identifier.wosWOS:000334414100007
dc.rights.accessRightsAcesso restrito
dc.description.sponsorshipIdMINECO/FEDERMTM2009-03437
dc.description.sponsorshipIdAGAUR2009SGR-410
dc.description.sponsorshipIdICREA Academia316338
dc.description.sponsorshipIdICREA Academia318999
dc.description.sponsorshipIdCAPES: PHB-2009-0025-PC
dc.description.sponsorshipIdFEDER-UNAB10-4E-378
dc.description.sponsorshipIdFAPESP: 10/17956-1
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt
dc.relation.ispartofjcr1.019
dc.relation.ispartofsjr0,492
Localize o texto completo

Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record