Resistance training with excessive training load and insufficient recovery alters skeletal muscle mass-related protein expression

Nenhuma Miniatura disponível

Data

2014-08-01

Autores

Alves Souza, Rodrigo Wagner [UNESP]
Aguiar, Andreo F. [UNESP]
Vechetti-Junior, Ivan J. [UNESP]
Piedade, Warlen Pereira [UNESP]
Rocha Campos, Gerson Eduardo
Dal-Pai-Silva, Maeli [UNESP]

Título da Revista

ISSN da Revista

Título de Volume

Editor

Lippincott Williams & Wilkins

Resumo

The aim of this study was to investigate the effects of a resistance training program with excessive training load and insufficient recovery time between bouts on muscle hypertrophy-and atrophy-related protein expression. Male Wistar rats were randomly assigned to either a trained (TR, N = 9) or a sedentary (SE, N = 9) group. The TR group was subjected to a 12-week resistance training program with excessive training load and insufficient recovery between bouts that was designed to induce plantaris muscle atrophy. After the 12-week experiment, the plantaris muscle was collected to analyze the cross-sectional area (CSA) of the muscle fibers, and MAFbx, MyoD, myogenin, and IGF-I protein expression (Western blot). The CSA was reduced significantly (-17%, p <= 0.05) in the TR group compared with the SE group. Reciprocally, there was a significant (p <= 0.05) 20% increase in MAFbx protein expression, whereas the MyoD (-27%), myogenin (-29%), and IGF-I (-43%) protein levels decreased significantly (p <= 0.05) in the TR group compared with the SE group. In conclusion, our data indicated that muscle atrophy induced by resistance training with excessive training load and insufficient recovery was associated with upregulation of the MAFbx catabolic protein and downregulation of the MyoD, myogenin, and IGF-I anabolic proteins. These findings suggest that quantitative analysis of these proteins can be important and complementary with other biochemical markers to confirm a possible overtraining diagnosis.

Descrição

Palavras-chave

overworked muscles, muscle atrophy, MAFbx, MyoD, myogenin, IGF-I

Como citar

Journal Of Strength And Conditioning Research. Philadelphia: Lippincott Williams & Wilkins, v. 28, n. 8, p. 2338-2345, 2014.