Show simple item record

dc.contributor.advisorTelis, Vania Regina Nicoletti [UNESP]
dc.contributor.advisorFranco, Célia Maria Landi [UNESP]
dc.contributor.authorPérez-Monterroza, Ezequiel José
dc.date.accessioned2018-03-21T21:07:15Z
dc.date.available2018-03-21T21:07:15Z
dc.date.issued2018-02-26
dc.identifier.urihttp://hdl.handle.net/11449/153142
dc.description.abstractO amido é ideal como material de parede na preparação de sistemas de liberação controlada, é barato e considerado GRAS. O amido está constituído por dois biopolímeros de D-glicose, a amilose e a amilopectina, as quais representam 99 % da matéria seca do grânulo. A amilose tem a capacidade de formar complexos com algumas moléculas hidrofóbicas como flavors e ácidos graxos, os quais são capazes de resistir a variações de pH e temperaturas elevadas, tornando-se interessante para a formulação de sistemas de liberação controlada de nutrientes. O objetivo inicial deste projeto foi a utilização de amilose extraída da mandioca e do amido de milho com alto teor de amilose comercial (Hylon VII, 72% de amilose) com o intuito de encapsular bixina e avaliar a formação de complexos de inclusão de V-amilose, bem como a sua caracterização usando difração de raios X (DRX), calorimetria exploratória de varredura, espectroscopia de infravermelho, microscopia eletrônica de varredura (MEV), cor, teor de bixina encapsulado, ensaios reológicos oscilatórios e capacidade de liberação. Foram estudados os efeitos das condições de processo de encapsulação por precipitação em solução ácida e através do tratamento com ultrassom sobre as interações entre a bixina e o amido. O efeito da proteína de soro de leite sobre o processo de encapsulação por precipitação em solução ácida também foi estudado. Finalmente, foi realizado um estudo de otimização usando a metodologia de superfície de resposta para selecionar as melhores condições em ambos os métodos, maximizando a capacidade de carga interior da matriz de amido. Além disso, pelo fato de que os xerogéis e criogéis de amido têm ganhado interesse na indústria como sistemas para a microencapsulação de compostos bioativos, este trabalho também explora a capacidade da amilose de mandioca para encapsular carotenoides usando essas metodologias. Nesse caso foram usados como moléculas-hóspedes os carotenoides presentes no óleo de abacate, luteína e neoxantina. Os resultados da encapsulação da bixina usando Hylon VII e proteína por precipitação de uma solução ácida mostraram que existe interação entre a proteína de soro de leite, o Hylon VII e a bixina, como foi observado na análise por FT-IR, no entanto, os padrões de difração e a análise por DSC não confirmaram a formação de complexos de inclusão do tipo V-amilose com a bixina. Porém, transições endotérmicas com ponto de fusão em 117,2, 105 e 104 °C foram observadas nas amostras preparadas a 90 °C com 0%, 10% e 20% de proteína, respectivamente. Cabe ressaltar que um aumento no conteúdo de proteína causou uma diminuição na entalpia de fusão desta estrutura, assim como um decréscimo em sua cristalinidade relativa, o qual foi causado provavelmente pela interação entre a bixina e a proteína. No grupo das amostras preparadas a 90 °C, o aumento no conteúdo de proteína resultou em uma tendência a aumentar o conteúdo e bixina encapsulado. Os resultados de FT-IR mostraram que as bandas de absorção associadas com as vibrações do grupo -C=C- desaparecem, indicando restrição da cadeia da bixina na matriz, assim como o aumento da disponibilidade para interagir com a proteína, embora, essas interações pareçam ser poucas a altas temperaturas. Os padrões de liberação da bixina foram afetados pelo conteúdo de proteína e a temperatura usada no processo de encapsulação, resultando em diferentes porcentagens de liberação. Nos ensaios de encapsulação da bixina com ultrassom foi avaliado o efeito do tratamento sobre as interações amido-bixina. Os resultados por DSC e DRX não confirmaram a formação de complexos de inclusão tipo V-amilose, no entanto, a análise por FT-IR indicou que as bandas de absorção do grupo funcional -C=O da bixina desapareceram depois do processo de encapsulação, o que sugere a existência de interação entre a bixina e o amido. Aparentemente esta não foi encapsulada eficientemente dentro da cavidade de amilose, provavelmente pelo seu tamanho molecular. Os espectros mecânicos dos géis formados durante o processo de encapsulação por ultrassom mostraram uma leve variação dos módulos de armazenamento (G’) e de perda (G’’), com G’>G’’, indicando tratar-se de géis fracos. O maior teor de bixina encapsulado no interior da matriz foi obtido com potência de ultrassom de 150 W por 60 minutos de tratamento. As amostras submetidas ao ultrassom foram menos susceptíveis à ação do fluido intestinal simulado, provavelmente devido ao aumento das interações entre a bixina e o amido em comparação à amostra controle. Em ambos os métodos de encapsulação a morfologia das partículas apresentou superfície irregular e erodida, com protrusões provocadas pela agregação de amilose. Através da análise estatística, observou-se que nos dois métodos de preparação todos os fatores tiveram efeito significativo (p<0,05) sobre o teor de bixina, tanto na superfície como no interior da matriz de amido. Na encapsulação por precipitação em meio ácido, o maior teor de bixina na matriz foi encontrado com o tratamento a 90 °C usando amilose de mandioca junto com proteína. De forma geral, com o uso de amilose de mandioca obteve se um maior teor de bixina encapsulado no interior da matriz e este sempre aumentou com o uso de proteína. Em relação ao tratamento com ultrassom, o maior teor de bixina encapsulado no interior da matriz foi alcançado com 2% de Hylon 150 W e 20 minutos de tratamento. A eficiência de encapsulação alcançada variou de 13,1% a 62,1% e de 17,3% a 94,5% usando tratamento com ultrassom e precipitação em meio ácido, respectivamente. As condições ótimas foram de 2% Hylon, 150 W e 20 minutos para o tratamento com ultrassom. Em relação ao método por precipitação em meio ácido foram 2% amilose de mandioca com proteína, a 68 °C. Os resultados obtidos no processo de encapsulação de luteína e neoxantina usando xerogéis e criogéis de amilose de mandioca indicaram que não houve formação de complexos de inclusão do tipo V-amilose. Entanto, os padrões de difração de raios X observados são característicos deste tipo de complexos. Foi observado um leve aumento na capacidade de encapsulação nas amostras retrodegradadas a -18°C e liofilizadas.pt
dc.description.abstractThe starch is considered safe and cheap, ideal as wall material in the formulation of delivery systems. Starch granule consists of two major types of α-glucans, amylose, and amylopectin, which represent about 99% of dry matter. Amylose and some hydrophobic molecules such as flavors and fatty acids, form amylose inclusion complexes. Amylose complexes resist to variations of pH and elevated temperature, being good candidates for the formulation of nutrient delivery systems. The initial objective of this thesis was to use high-amylose corn starch (Hylon VII, 72 % amylose) and amylose from cassava starch as wall material for the encapsulation of bixin, evaluating the formation of V-amylose inclusion complexes, and performing their characterization by using X-ray diffractometry, FT-IR spectrometry, scanning electron microscopy, oscillatory rheological tests, color, encapsulated bixin content, and release profile. The effects of process parametres used in the methods based on ultrasound treatment and precipitation in acid solution on the interaction between amylose and bixin were studied, as well as the effect of whey protein on the encapsulation process by precipitation in acid solution. The process conditions that would maximize the encapsulate bixin content inside of the starch matrix were determined by using desirability function. In addition, considering that xerogels and cryogels have gained interest as potential systems for microencapsulation of bioactive compounds and the use of silica aerogels as delivery systems has been demonstrated with success, this thesis explores the capacity of amylose from cassava starch to encapsulate carotenoids using these methodologies. In this case, the guest molecules were the carotenoids present in the avocado oil, lutein and neoxanthin. The results of FT-IR indicated that there was an interaction between protein, Hylon, and bixin in the encapsulation process by precipitation in acid medium. However, the diffraction patterns and the DSC analysis indicated no formation of V-amylose complexes. Nevertheless, although the set of samples prepared at 90°C with 0%, 10% e 20% of protein respectively, showed endothermal transitions with a melting point about 117,2º, 105º and 104°C The increase in protein content decreased the melting enthalpy and relative crystallinity, probably due to the interaction between bixin and protein. In the set of samples prepared at 90°C, the increase in protein content led to a tendency to increase the encapsulate bixin content inside the matrix. The FT-IR analysis indicated that adsorption bands associated with the vibration of the group -C=C- disappeared due to the restriction of bixin chain into starch matrix and increase in the availability to interacting with the protein. However, these interactions seem to be fewer at the higher temperature. The bixin delivery patterns were affected by protein content and temperature used in the encapsulation process, resulting in different delivery amounts. In the encapsulation of bixin by ultrasound treatment, the effect of sonication power level on the interaction between starch and bixin was studied, nevertheless, the results of DSC and Xray diffraction indicated no formation of amylose inclusion complex. The FT-IR analysis showed that adsorption bands of the -C=O group in bixin disappeared after the encapsulation process, which confirms the interaction between starch and bixin, in spite of bixin having not be entrapped efficiently inside of the amylose cavity, probably due to its molecular size. Frequency sweep tests of gels formed during ultrasound encapsulation process showed a slight frequency dependence of G’ and G” moduli with G’>G’’, with patterns correponding to weak gels. The highest bixin encapsulated content inside of matrix was reached using the combination of ultrasound power of 150 W and 60 min of treatment. The sonicated samples were less susceptible to action of simulated intestinal fluid, probably due to increases interaction between starch and bixin as compared to control sample. The particle morphology of samples prepared by both methods showed protrusions of aggregates of amylose, as well as irregular and eroded surfaces. Statistical analysis showed that in both methods, all factors had a significant effect (p<0.05) on bixin encapsulated content inside or on the surface of the matrix. In the encapsulation by precipitation in acid solution, the combination of 90 °C using amylose from cassava starch and protein leaded to the highest bixin encapsulated content. In general, amylose from cassava starch encapsulated a greater bixin content inside of matrix compared to Hylon, and the presence of protein increased this effect even more. Regarding ultrasound treatment, the combination of 2% of amylose from Hylon, and 20 min of treatment showed the highest bixin encapsulated content inside of matrix. Encapsulation efficiency ranged from 13.1% to 62.1% and 17.3% to 94.5% using ultrasound treatment and precipitation in acid solution respectively. The optimum conditions were 2% amylose, 150 W, and 20 min in the ultrasound treatment, whereas in the method by precipitation in acid solution the best conditions were 2% amylose from cassava starch with protein at 68 °C. The results obtained from DSC and FT-IR spectroscopy in the encapsulation using cryogels and xerogels indicated no formation of inclusion complexes V-type of amylose. Nevertheless, the diffraction patterns were characteristic of this type of complexes. The samples retrograded at -18 °C and dried using freeze-drying had a slightly higher encapsulation degree than the samples retrograded at 8 °C.en
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.language.isopor
dc.publisherUniversidade Estadual Paulista (UNESP)
dc.subjectAmilosept
dc.subjectAmilosept
dc.subjectBixinapt
dc.subjectLuteínapt
dc.subjectNeoxantinapt
dc.subjectAvocadopt
dc.subjectXerogéispt
dc.subjectCriogéispt
dc.subjectEncapsulaçãopt
dc.subjectAmyloseen
dc.subjectBixinen
dc.subjectLuteinen
dc.subjectNeoxanthinen
dc.subjectXerogelsen
dc.subjectEncapsulationen
dc.subjectCryogelsen
dc.titleEncapsulação de carotenoides em matrizes de amilose por diferentes processos: formação de criogéis, ultrassom e precipitação em meio ácidopt
dc.title.alternativeEncapsulación de carotenoides en matrices de amilosa por diferentes procesos: formación de criogeles, ultrasonido y precipitación en medio ácidoes
dc.typeTese de doutorado
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.rights.accessRightsAcesso aberto
unesp.graduateProgramEngenharia e Ciência de Alimentos - IBILCEpt
unesp.knowledgeAreaEngenharia de alimentospt
unesp.researchAreaEngenharia de processos para a indústria de alimentospt
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt
unesp.embargoOnlinept
dc.identifier.aleph000898589
dc.identifier.capes33004153070P3
Localize o texto completo

Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record