As Simetrias de Lie de um Pião

Carregando...
Imagem de Miniatura

Data

2018

Autores

Basquerotto, Cláudio H. C. Costa
Righetto, Edison
Silva, Samuel Da

Título da Revista

ISSN da Revista

Título de Volume

Editor

Sociedade Brasileira de Física

Resumo

The existence of symmetries in differential equations can generate transformations of dependent and independent variables that facilitate the integration of these equations. In the nineteenth century, Sophus Lie developed a method of extracting symmetries that can be used effectively to reveal first integrals of a differential equation. These invariants can in some situations be identified by the Noether theorem or from manipulating the equations themselves with Lie transformations. Despite the formalism over conservation theorems for energy and linear/angular momentum, initial courses in classical mechanics often do not clearly or objectively highlight the relationship between conservation laws and the existence of possible Lie symmetries. For this reason, we seek to present an introduction to Lie symmetries using a language accessible to a graduate student in physics, mathematics, or engineering with basic mastery of classical mechanics in several variables. In order to illustrate the approach, we consider the classical problem of a spinning top with stationary precession. From the equations of motion, the Lie symmetries are identified and used in a transformation that results in an order reduction. The first integrals are obtained from this result using the Noether theorem, and we illustrate that the Lie symmetries for this problem are also Noether symmetries. Finally, the solution to the equations of motion are written using Jacobi elliptic functions, and from this we obtain the precession, nutation and spin angles under the presented conditions.
A existência de simetrias em equações diferenciais pode gerar transformações em variáveis dependentes e independentes que facilitam a integração destas equações. Em especial, Sophus Lie desenvolveu no século XIX uma forma de extração de simetrias que podem ser usadas efetivamente para revelar as integrais primeiras, ou seja, as constantes de movimento, que muitas vezes podem estar escondidas. Estes invariantes podem em algumas situações ser identificados pelo teorema de Noether ou a partir de manipulações das próprias equações com transformações de Lie. Nos cursos iniciais de mecânica clássica, apesar de todo o formalismo em cima dos teoremas de conservação de energia e momento linear/angular, a relação disto com a existência de possíveis simetrias de Lie não é destacada de forma clara e objetiva. Neste sentido, o presente artigo busca apresentar uma introdução às simetrias de Lie usando uma linguagem acessível para um aluno de graduação de física, matemática ou engenharia com domínio básico em fundamentos de cálculo com várias variáveis. Para ilustrar a abordagem, considera-se um problema clássico de mecânica considerando um pião em regime de movimento com precessão estacionária. A partir das equações de movimento obtidas, as simetrias de Lie são identificadas e usadas na transformação para a redução da ordem. As integrais primeiras são obtidas a partir deste resultado com o Teorema de Noether, mostrando que neste exemplo e condição as simetrias de Lie também são simetrias de Noether. Por fim, a resolução das equações de movimento podem ser feitas usando funções elípticas de Jacobi para a obtenção dos ângulos de precessão, nutação e spin nas condições apresentadas.

Descrição

Palavras-chave

Lie symmetries, Noether theorem, Symmetric top, Motion constants, Jacobi elliptic functions, Simetrias de Lie, Teorema de Noether, Pião simétrico, Constantes de movimento, Funções elípticas de Jacobi

Como citar

Revista Brasileira de Ensino de Física. Sociedade Brasileira de Física, v. 40, n. 2, p. -, 2018.

Coleções