On a direct Uvarov-Chihara problem and some extensions
Fecha
2014-11-01Tipo
Capítulo de libro
Restricciones de acceso
Acceso cerrado
Metadatos
Mostrar el registro completo del ítemResumen
In this paper, we analyze a perturbation of a nontrivial probability measure dμ supported on an infinite subset on the real line, which consists on the addition of a time-dependent mass point. For the associated sequence of monic orthogonal polynomials, we study its dynamics with respect to the time parameter. In particular, we determine the time evolution of their zeros in the special case when the measure is semiclassical. We also study the dynamics of the Verblunsky coefficients, i.e., the recurrence relation coefficients of a polynomial sequence, orthogonal with respect to a nontrivial probability measure supported on the unit circle, induced from dμ through the Szego transformation.
Cómo citar este documento
Castillo, K.; Garza, L.; Marcellán, F.. On a direct Uvarov-Chihara problem and some extensions. Analytic Number Theory, Approximation Theory, and Special Functions: In Honor of Hari M. Srivastava, v. 9781493902583, p. 691-704. Disponible en: <http://hdl.handle.net/11449/167837>.
Idioma
Inglés
Colecciones
