llex paraguariensis decreases oxidative stress in bone and mitigates the damage in rats during perimenopause

Carregando...
Imagem de Miniatura

Data

2017-11-01

Autores

Pereira, Camila Scacco [UNESP]
Stringhetta-Garcia, Camila Tami [UNESP]
da Silva Xavier, Lilian [UNESP]
Tirapeli, Keny Gonçalves [UNESP]
Pereira, Ariana Aparecida Ferreira [UNESP]
Kayahara, GiselIi Mitsuy [UNESP]
Tramarim, José Marcelo [UNESP]
Crivelini, Marcelo Macedo [UNESP]
Padovani, Karina Stringhetta
Leopoldino, Andréia Machado

Título da Revista

ISSN da Revista

Título de Volume

Editor

Resumo

During perimenopause, oxidative stress increases, which may result in disruption of bone turnover, and consequently in osteoporosis. The use of antioxidants may be an effective nutritional approach to reducing osteoporosis in this period of life. Mate tea (MT) (Ilex paraguariensis), a typical and inexpensive beverage consumed in the Brazilian south-east, Argentina and Uruguay, increases antioxidant defense. Our hypothesis was that MT would decrease oxidative stress and mitigate bone deterioration. To test this, we analyzed oxidative stress markers of bone turnover, and local and systemic markers of bone metabolism of rats during natural perimenopause. Female Wistar rats (aged 16 months) in proven perimenopause period received 20 mg/kg BW/day of mate tea, by gavage (PM + MT Group, n = 10) or water (PM Group, n = 10). Female rats aged 4 months (AD Group, n = 10) received water. The treatment period was four weeks. MT minimized the deterioration of rat microarchitecture, characterized by increase in the bone trabecular area, number of osteocytes and areal bone mineral density. These results were accompanied by a lower level of malondialdehyde, an oxidative stress marker, in femoral tissue homogenate. Plasmatic tartrate-resistant acid phosphatase, a typical osteoclastic function marker, decreases after treatment, indicating a decrease in osteoclastic function. MT also modified the immunostaining pattern of bone metabolism markers, decreasing the receptor activator of nuclear factor kappa-B ligant (RANKL), superoxide dismutase isoform 2 (SOD2) and increasing osteoprotegerin (OPG), a decoy receptor for the RANKL, which positively modulates bone mass. These results suggested MT was capable of decreasing bone resorption by inhibiting the osteoclastogenesis in a RANKL-dependent signaling pathway activated by oxidative stress. Taken together, the results indicated that MT minimized bone loss in perimenopause and this effect is at least partly due to the decrease in oxidative stress, confirming our hypothesis.

Descrição

Palavras-chave

Bone, Ilex paraguariensis, Oxidative stress, Perimenopause

Como citar

Experimental Gerontology, v. 98, p. 148-152.