Show simple item record

dc.contributor.authorLorenzón, Esteban N. [UNESP]
dc.contributor.authorSantos-Filho, Norival A. [UNESP]
dc.contributor.authorRamos, Matheus A.S. [UNESP]
dc.contributor.authorBauab, Tais M. [UNESP]
dc.contributor.authorCamargo, Ilana L.B.C.
dc.contributor.authorCilli, Eduardo M. [UNESP]
dc.identifier.citationProtein and Peptide Letters, v. 23, n. 8, p. 738-747, 2016.
dc.description.abstractDue to the growing problem of antibiotic-resistant microorganisms, the development of novel antimicrobial agents is a very important challenge. Dimerization of cationic antimicrobial peptides (cAMPs) is a potential strategy for enhancing antimicrobial activity. Here, we studied the effects of magainin 2 (MG2) dimerization on its structure and biological activity. Lysine and glutamic acid were used to synthesize the C-and N-terminal dimers of MG2, respectively, in order to evaluate the impact of linker position used to obtain the dimers. Both MG2 and its dimeric versions showed a random coil structure in aqueous solution. However, in the presence of a structure-inducing solvent or a membrane mimetic, all peptides acquired helical structure. N-terminal dimerization did not affect the biological activity of the peptide. On the other hand, the C-terminal dimer, (MG2)2K, showed antimicrobial activity 8-16 times higher than that of MG2, and the time required to kill Escherichia coli was lower. The enhanced antimicrobial activity was related to membrane permeabilization. (MG2)2K was also more active against multidrug-resistant bacteria of clinical origin. Overall, the results presented here demonstrate that C-terminal lysine-linked dimerization improve the activity of MG2, and (MG2)2K can be considered as a potential antimicrobial agent.en
dc.relation.ispartofProtein and Peptide Letters
dc.subjectAntimicrobial activity
dc.subjectCircular dichroism
dc.subjectMagainin 2
dc.subjectMembrane permeabilization
dc.subjectMulti-drug resistant bacteria
dc.titleC-terminal lysine-linked magainin 2 with increased activity against multidrug-resistant bacteriaen
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.description.affiliationInstitute of Chemistry UNESP-Univ. Estadual Paulista, Rua Prof. Francisco Degni, 55
dc.description.affiliationFaculty of Pharmaceutical Sciences UNESP-Univ. Estadual Paulista
dc.description.affiliationInstituto de Física de São Carlos Universidade de São Paulo
dc.description.affiliationUnespInstitute of Chemistry UNESP-Univ. Estadual Paulista, Rua Prof. Francisco Degni, 55
dc.description.affiliationUnespFaculty of Pharmaceutical Sciences UNESP-Univ. Estadual Paulista
dc.rights.accessRightsAcesso restrito
Localize o texto completo

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record