High tantalum oxide content in Eu3+-doped phosphate glass and glass-ceramics for photonic applications

Nenhuma Miniatura disponível

Data

2020-11-25

Autores

Marcondes, Lia Mara [UNESP]
Santagneli, Silvia Helena [UNESP]
Manzani, Danilo
Cassanjes, Fabia Castro
Batista, Gislene
Mendoza, Valentina Gacha [UNESP]
Ramos da Cunha, Cristiano [UNESP]
Poirier, Gael Yves
Nalin, Marcelo [UNESP]

Título da Revista

ISSN da Revista

Título de Volume

Editor

Resumo

Transparent Eu3+-doped tantalum phosphate glass-ceramics containing Na2Ta8O21 nanocrystals were successfully obtained by a two-step heat treatment. Structural analyses were performed using X-ray diffraction, Transmission Electron Microscopy, Nuclear Magnetic Resonance and Raman spectroscopy. Due to the high Ta/P ratio (= 2) the glass network is built from a mixed 3D PO4–TaO6 chain in which TaO6-rich regions are inserted and responsible for crystallization of an alkali tantalum oxide phase Na2Ta8O21. Eu3+ and their optical properties was used as a sensitive probe to study it site structure in the host matrix. The radiative properties of Eu3+ emission levels were predicted using the Judd-Ofelt theory. The chemical environment and local phonon energy around the rare-earth ions have been proposed based on phonon side band associated with the 7F0 → 5D2 transition, 5D0 → 7F2/7F1 relative intensity and narrowing of the emission bands. High tantalum content precursor glass exhibits high photoluminescence quantum efficiency due to low phonon energy and high refractive index (1.9461 at 633 nm). A perovskite-like bronze crystalline structure is formed in the glass-ceramic (nucleated at 925 °C for 0.5 h and grown at 940 °C for different times) and is considered promising for nonlinear optical applications and studies.

Descrição

Palavras-chave

Glass, Glass-ceramics, Perovskite-like bronze, Rare-earth doped glass-ceramics, Tantalum

Como citar

Journal of Alloys and Compounds, v. 842.

Coleções