Show simple item record

dc.contributor.authorLlibre, Jaume
dc.contributor.authorRoberto, Luci Any [UNESP]
dc.date.accessioned2014-05-20T14:02:55Z
dc.date.available2014-05-20T14:02:55Z
dc.date.issued2011-08-01
dc.identifierhttp://dx.doi.org/10.1063/1.3618280
dc.identifier.citationJournal of Mathematical Physics. Melville: Amer Inst Physics, v. 52, n. 8, p. 8, 2011.
dc.identifier.issn0022-2488
dc.identifier.urihttp://hdl.handle.net/11449/22169
dc.description.abstractThe classical Hill's problem is a simplified version of the restricted three-body problem where the distance of the two massive bodies (say, primary for the largest one and secondary for the smallest one) is made infinity through the use of Hill's variables. The Levi-Civita regularization takes the Hamiltonian of the Hill lunar problem into the form of two uncoupled harmonic oscillators perturbed by the Coriolis force and the Sun action, polynomials of degree 4 and 6, respectively. In this paper, we study periodic orbits of the planar Hill problem using the averaging theory. Moreover, we provide information about the C-1 integrability or non-integrability of the regularized Hill lunar problem. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3618280]en
dc.description.sponsorshipICREA Academia
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.format.extent8
dc.language.isoeng
dc.publisherAmerican Institute of Physics (AIP)
dc.relation.ispartofJournal of Mathematical Physics
dc.sourceWeb of Science
dc.titleOn the periodic orbits and the integrability of the regularized Hill lunar problemen
dc.typeArtigo
dcterms.licensehttp://www.aip.org/pubservs/web_posting_guidelines.html
dcterms.rightsHolderAmer Inst Physics
dc.contributor.institutionUniv Autonoma Barcelona
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.description.affiliationUniv Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
dc.description.affiliationIbilce UNESP, Dept Matemat, BR-15054000 Sao Jose do Rio Preto, Brazil
dc.description.affiliationUnespIbilce UNESP, Dept Matemat, BR-15054000 Sao Jose do Rio Preto, Brazil
dc.identifier.doi10.1063/1.3618280
dc.identifier.wosWOS:000294485200014
dc.rights.accessRightsAcesso restrito
dc.description.sponsorshipIdCAPES: 015/2010
dc.description.sponsorshipIdCAPES: 4251/10-5
dc.description.sponsorshipIdMEC/FEDER MTM 2008-03437
dc.description.sponsorshipIdCIRIT 2009SGR 410
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt
dc.identifier.fileWOS000294485200014.pdf
dc.relation.ispartofjcr1.165
dc.relation.ispartofsjr0,644
Localize o texto completo

Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record