Silicon fertilization increases gas-exchange and biomass by silicophytolith deposition in the leaves of contrasting drought-tolerant sugarcane cultivars under well-watered conditions

Nenhuma Miniatura disponível

Data

2021-09-01

Autores

Camargo, Mônica Sartori
Fernández Honaine, Mariana
Osterrieth, Margarita
Bozza, Natália Ganzaroli
da Mota Silva, Vicente [UNESP]
Benvenuto, Maria Laura
de Almeida Silva, Marcelo [UNESP]

Título da Revista

ISSN da Revista

Título de Volume

Editor

Resumo

Purpose: Silicon (Si) fertilization provides benefits to sugarcane. However, information remain scarce about the relationship between Si fertilization, gas exchange responses, biomass and silicophytolith accumulation in contrasting drought tolerant sugarcane cultivars under well-watered conditions Methods: Sugarcane cultivars (drought-tolerant and drought-sensitive) were grown in pots containing soil with low available Si and were treated (at rates equivalent to 0, 250, 500, 750, and 1000 kg ha−1 Si) with Si as silicate. The silicophytolith contents, morphotype descriptions, Si concentrations and gas exchange were evaluated in the top visible dewlap leaves. Stalk length and stalk biomass were also evaluated. Results: The silicophytolith, Si contents, net CO2 assimilation rate (A), plant transpiration (E), stomatal conductance (gs) and electron transport rate (ETR) of leaves and fresh biomass and length of stalks increased linearly as functions of the Si application rate, independent of cultivar. RB86-7515 showed the highest stalk length, fresh stalk and green leaf biomass, relative water content, and water potential, while RB85-5536 showed superior values for A, E, gs, and ETR. Conclusions: Si fertilization improved photosynthesis, transpiration, stalk length, and stalk biomass production in sugarcane. The highest silicophytolith content was reflected in a diversity of silicified cells, which may favor a higher photosynthesis and biomass. The increase of silicification in stomata complexes and trichomes with Si may be associated to a higher Si availability and transpiration. Contrasting drought-tolerant cultivars showed similar silicification and gas exchange responses with Si. Considering these benefits, Si should be included in the fertilization program of sugarcane.

Descrição

Palavras-chave

Absorption, Plant nutrition, Saccharum spp, Silica, Silicate, Soil

Como citar

Plant and Soil, v. 466, n. 1-2, p. 581-595, 2021.

Coleções