Show simple item record

dc.contributor.authorLivorati, André Luis Prando [UNESP]
dc.contributor.authorLadeira, Denis Gouvêa [UNESP]
dc.contributor.authorLeonel, Edson D. [UNESP]
dc.date.accessioned2022-04-28T20:46:17Z
dc.date.available2022-04-28T20:46:17Z
dc.date.issued2008-11-11
dc.identifierhttp://dx.doi.org/10.1103/PhysRevE.78.056205
dc.identifier.citationPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics, v. 78, n. 5, 2008.
dc.identifier.issn1539-3755
dc.identifier.issn1550-2376
dc.identifier.urihttp://hdl.handle.net/11449/225343
dc.description.abstractThe phenomenon of Fermi acceleration is addressed for the problem of a classical and dissipative bouncer model, using a scaling description. The dynamics of the model, in both the complete and simplified versions, is obtained by use of a two-dimensional nonlinear mapping. The dissipation is introduced using a restitution coefficient on the periodically moving wall. Using scaling arguments, we describe the behavior of the average chaotic velocities on the model both as a function of the number of collisions with the moving wall and as a function of the time. We consider variations of the two control parameters; therefore critical exponents are obtained. We show that the formalism can be used to describe the occurrence of a transition from limited to unlimited energy growth as the restitution coefficient approaches unity. The formalism can be used to characterize the same transition in two-dimensional time-varying billiard problems. © 2008 The American Physical Society.en
dc.language.isoeng
dc.relation.ispartofPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
dc.sourceScopus
dc.titleScaling investigation of Fermi acceleration on a dissipative bouncer modelen
dc.typeArtigo
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.description.affiliationDepartamento de Estatística, Matemática Aplicada e Computação IGCE Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, CEP 13506-900, Rio Claro, São Paulo
dc.description.affiliationUnespDepartamento de Estatística, Matemática Aplicada e Computação IGCE Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, CEP 13506-900, Rio Claro, São Paulo
dc.identifier.doi10.1103/PhysRevE.78.056205
dc.identifier.scopus2-s2.0-56649121678
Localize o texto completo

Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record