Show simple item record

dc.contributor.authorBelato, D.
dc.contributor.authorBalthazar, José Manoel [UNESP]
dc.contributor.authorWeber, H. I.
dc.date.accessioned2014-02-26T17:17:36Z
dc.date.accessioned2014-05-20T14:16:02Z
dc.date.available2014-02-26T17:17:36Z
dc.date.available2014-05-20T14:16:02Z
dc.date.issued2003-12-01
dc.identifierhttp://dx.doi.org/10.1023/B:NODY.0000013510.13416.2e
dc.identifier.citationNonlinear Dynamics. Dordrecht: Kluwer Academic Publ, v. 34, n. 3-4, p. 309-317, 2003.
dc.identifier.issn0924-090X
dc.identifier.urihttp://hdl.handle.net/11449/24809
dc.description.abstractThe investigation of the behavior of a nonlinear system consists in the analysis of different stages of its motion, where the complexity varies with the proximity of a resonance region. Near this region the stability domain of the system undergoes sudden changes due basically to competition and interaction between periodic and saddle solutions inside the phase portrait, leading to the occurrence of the most different phenomena. Depending of the domain of the chosen control parameter, these events can reveal interesting geometric features of the system so that the phase portrait is not capable to express all them, since the projection of these solutions on the two-dimensional surface can hide some aspects of these events. In this work we will investigate the numerical solutions of a particular pendulum system close to a secondary resonance region, where we vary the control parameter in a restrict domain in order to draw a preliminary identification about what happens with this system. This domain includes the appearance of non-hyperbolic solutions where the basin of attraction in the center of the phase portrait diminishes considerably, almost disappearing, and afterwards its size increases with the direction of motion inverted. This phenomenon delimits a boundary between low and high frequency of the external excitation.en
dc.format.extent309-317
dc.language.isoeng
dc.publisherKluwer Academic Publ
dc.relation.ispartofNonlinear Dynamics
dc.sourceWeb of Science
dc.subjectnon-hyperbolic solutionpt
dc.subjectpendulumpt
dc.subjectphase portrait geometrypt
dc.subjectnonlinear dynamicspt
dc.titleA note about the appearance of non-hyperbolic solutions in a mechanical pendulum systemen
dc.typeArtigo
dcterms.licensehttp://www.springer.com/open+access/authors+rights
dcterms.rightsHolderKluwer Academic Publ
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionPontifícia Universidade Católica do Rio de Janeiro (PUC-Rio)
dc.description.affiliationUNICAMP, Fac Engn Mecan, Dept Projeto Mecan, BR-13803970 Campinas, SP, Brazil
dc.description.affiliationUNESP, Inst Geociencias & Ciências Exatas, Dept Estatist Matemat Aplicada & Comp, BR-13500230 Rio Claro, SP, Brazil
dc.description.affiliationPontificia Univ Catolica Rio de Janeiro, Dept Engn Mecan, BR-22453900 Rio de Janeiro, Brazil
dc.description.affiliationUnespUNESP, Inst Geociencias & Ciências Exatas, Dept Estatist Matemat Aplicada & Comp, BR-13500230 Rio Claro, SP, Brazil
dc.identifier.doi10.1023/B:NODY.0000013510.13416.2e
dc.identifier.wosWOS:000188456400006
dc.rights.accessRightsAcesso restrito
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claropt
dc.relation.ispartofjcr4.339
Localize o texto completo

Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record