Boundary oscillations and nonlinear boundary conditions
Abstract
We study how oscillations in the boundary of a domain affect the behavior of solutions of elliptic equations with nonlinear boundary conditions of the type partial derivative u/partial derivative n + g(x, u) = 0. We show that there exists a function gamma defined on the boundary, that depends on an the oscillations at the boundary, such that, if gamma is a bounded function, then, for all nonlinearities g, the limiting boundary condition is given by partial derivative u/partial derivative n + gamma(x)g(x, u) = 0 (Theorem 2.1, Case 1). Moreover, if g is dissipative and gamma infinity then we obtain a Dirichlet an boundary condition (Theorem 2.1, Case 2).
How to cite this document
Arrieta, Jose M.; Bruschi, Simone M.. Boundary oscillations and nonlinear boundary conditions. Comptes Rendus Mathematique. Paris: Elsevier France-editions Scientifiques Medicales Elsevier, v. 343, n. 2, p. 99-104, 2006. Available at: <http://hdl.handle.net/11449/25113>.
Language
English
Collections
