Local Er(III) environment in luminescent titanosilicates prepared from microporous precursors

Nenhuma Miniatura disponível

Data

2002-01-01

Autores

Rainho, J. P.
Pillinger, M.
Carlos, L. D.
Ribeiro, SJL
Almeida, R. M.
Rocha, J.

Título da Revista

ISSN da Revista

Título de Volume

Editor

Royal Soc Chemistry

Resumo

The local environment of Er3+ ions in microporous titanosilicate ETS-10 and in synthetic narsarsukite and glassy materials obtained by calcination of ETS-10 has been investigated by EXAFS, Raman and photoluminescence spectroscopies. Er L-III-edge EXAFS studies of Er3+-doped ETS-10 support the view that the exchanged Er3+ ions reside close to the (negatively charged) TiO6 octahedra. In ETS-10, Er3+ is partially bonded to framework oxygen atoms and hydration water molecules. The Er...Ti distance (3.3 Angstrom) is similar to the Na...Ti distances (3.15-3.20 Angstrom) reported previously for Na-ETS-10. Although the exact location of the ErO6 units within the host structure of Er3+-doped synthetic narsarsukite is still an open question, it is most likely that Er3+ substitutes Ti4+ rather than Na+ ions. EXAFS spectroscopy indicates that no significant clustering of erbium atoms occurs in the titanosilicate samples studied. Evidence for the insertion of Er3+ ions in the framework of narsarsukite has been obtained by Raman spectroscopy. This is indicated by the increasing full-width at half-maximum (FWHM) of the 775 cm(-1) peak and the increasing intensity of the anatase peaks as the erbium content increases. In addition, as the narsarsukite Er3+ content increases a band at ca. 515 cm(-1) firstly broadens and subsequently a new peak appears at ca. 507 cm(-1).Er3+-doped narsarsukite exhibits a characteristic local vibrational frequency, (h) over bar omega ca. 330 cm(-1), with an electron-phonon coupling, g ca. 0.2, which constitutes additional evidence for framework Er3+ insertion. The number of lines in the infrared emission spectrum of synthetic narsarsukite indicates the presence of two optically-active erbium centres with very similar local environments and an average I-4(13/2) lifetime of 7.8 +/- 0.2 ms.

Descrição

Palavras-chave

Como citar

Journal of Materials Chemistry. Cambridge: Royal Soc Chemistry, v. 12, n. 4, p. 1162-1168, 2002.

Coleções