Show simple item record

dc.contributor.authorBorges, M. F.
dc.date.accessioned2014-05-20T15:28:09Z
dc.date.available2014-05-20T15:28:09Z
dc.date.issued2002-01-01
dc.identifierhttp://dx.doi.org/10.1023/A:1021108221000
dc.identifier.citationMathematical Physics Analysis and Geometry. Dordrecht: Kluwer Academic Publ, v. 5, n. 4, p. 307-318, 2002.
dc.identifier.issn1385-0172
dc.identifier.urihttp://hdl.handle.net/11449/38024
dc.description.abstractPerhaps one of the main features of Einstein's General Theory of Relativity is that spacetime is not flat itself but curved. Nowadays, however, many of the unifying theories like superstrings on even alternative gravity theories such as teleparalell geometric theories assume flat spacetime for their calculations. This article, an extended account of an earlier author's contribution, it is assumed a curved group manifold as a geometrical background from which a Lagrangian for a supersymmetric N = 2, d = 5 Yang-Mills - SYM, N = 2, d = 5 - is built up. The spacetime is a hypersurface embedded in this geometrical scenario, and the geometrical action here obtained can be readily coupled to the five-dimensional supergravity action. The essential idea that underlies this work has its roots in the Einstein-Cartan formulation of gravity and in the 'group manifold approach to gravity and supergravity theories'. The group SYM, N = 2, d = 5, turns out to be the direct product of supergravity and a general gauge group g: G = g circle times <(SU(2, 2/1))over bar>.en
dc.format.extent307-318
dc.language.isoeng
dc.publisherKluwer Academic Publ
dc.relation.ispartofMathematical Physics Analysis and Geometry
dc.sourceWeb of Science
dc.subjectgroup manifoldpt
dc.subjectsupergravitypt
dc.subjectsupersymmetrypt
dc.subjectsuper Yang-Mills theorypt
dc.titleGeometrical Lagrangian for a supersymmetric Yang-Mills theory on the group manifolden
dc.typeArtigo
dcterms.licensehttp://www.springer.com/open+access/authors+rights
dcterms.rightsHolderKluwer Academic Publ
dc.contributor.institutionUniv Cape Town
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.description.affiliationUniv Cape Town, Dept Math & Appl Math, ZA-7925 Cape Town, South Africa
dc.description.affiliationUNESP, State Univ São Paulo, Dept Comp, BR-15054000 Sao Jose do Rio Preto, Brazil
dc.description.affiliationUnespUNESP, State Univ São Paulo, Dept Comp, BR-15054000 Sao Jose do Rio Preto, Brazil
dc.identifier.doi10.1023/A:1021108221000
dc.identifier.wosWOS:000182393300001
dc.rights.accessRightsAcesso restrito
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt
dc.relation.ispartofjcr0.860
dc.relation.ispartofsjr0,545
Localize o texto completo

Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record