Electrochemical characterization of the paste carbon modified electrode with KSr2Ni0.75Nb4.25O15-delta solid in catalytic oxidation of the dipyrone
Abstract
The electrochemical behavior of a carbon paste electrode modified (CPEM) with nickel-doped potassium strontium niobate (KSr2Ni0.75Nb4.25O15-delta) of tetragonal tungsten bronze (TTB)-type structure was investigated as a new sensor for dipyrone. The optimum conditions were found in an electrode composition (in mass) of 20% KSr2Ni0.75Nb4.25O15-delta, 65% graphite and 15% mineral oil in 0.5 mol L-1 KCl solution at pH 6.0. The electrode exhibits reversible electrochemical behavior in a wide potential range (0.1-0.7 V vs. SCE), high conductivity, and stability/durability electrode in 0.50 mol L-1 KCl solution. The estimated surface concentration was found to equal 1.08 x 10(-9) mol cm(-2). The oxidation of dipyrone was performed at carbon paste electrode unmodified at +0.54 V vs. SCE and carbon paste electrode modified with KSr2Ni0.75Nb4.25O15-delta at +0.45 V vs. SCE. This result shows that the nickel-doped potassium strontium niobate on electrode surface promotes the oxidation of dipyrone. The reaction can be brought about electrochemically, where the niobium(IV) is first oxidation to a niobium(IV) oxide at the electrode surface. The niobium(IV) then undergoes a catalytic reduction by the dipyrone in solution back to the niobium(III), which can then be electrochemically re-oxidized to produce an enhancement of the anodic current. The identification of the oxidation product of dipyrone was made by mass spectrometry for elucidation of response mechanism of the sensor. Anodic peak current (I-pa) vs. dipyrone concentration for amperometric method at the modified electrode was linear in the 3.5 x 10(-5) and 3.1 x 10(-4) mol L-1 concentration range and the detection limit was 5.1 x 10(-6) mol L-1 dipyrone. At higher concentrations (>3.1 x 10(-4) mol L-1), deviation from linearity occurs. Under this condition, an electrocatalytic reaction takes place and proceeds through a mechanism similar to the Michaelis-Menten model. (C) 2012 Elsevier B.V. All rights reserved.
How to cite this document
Keywords
Language
Sponsor
Collections

Related items
Showing items related by title, author, creator and subject.
-
Núcleos de Ensino da Unesp: artigos 2009
Pinho, Sheila Zambello de; Oliveira, José Brás Barreto de
; Gazola, Rodrigo José Cristiano
; Mazotti, Adriano César
; Molero, Camila Schimite
; Mendes, Carolina Borghi
; Mello, Denise Fernandes de
; Marques, Emilia de Mendonça Rosa
; Talamoni, Jandira Liria Biscalquini
; Silva, José Humberto Dias da
et al. (Coleção PROGRAD (UNESP), 2011) [Livro]
-
Núcleos de Ensino da Unesp: artigos 2008
Pinho, Sheila Zambello de; Oliveira, José Brás Barreto de
; Pontes, Sueli Rodrigues
; Almeida, Djanira Soares de Oliveira e
; Godoy, Kathya Maria Ayres de
; Rosa, Claudia de Souza
; Nunes, Julianus Araújo
; Salvador, Sérgio Azevedo
; David, Célia Maria
; Vilche Peña, Angel Fidel
et al. (Coleção PROGRAD (UNESP), 2011) [Livro]
-
Ser e tornar-se professor: práticas educativas no contexto escolar
Pinho, Sheila Zambello de; Spazziani, Maria de Lourdes
; Mendonça, Sueli Guadelupe de Lima
; Rubo, Elisabete Aparecida Andrello
; Villarreal, Dalva Maria de Oliveira
; Duarte, Camila
; Okamoto, Mary Yoko
; Souza, Thais R.
; Garms, Gilza Maria Zauhy
; Marin, Fátima Aparecida Dias Gomes
et al. (Coleção PROGRAD (UNESP), 2012) [Livro]