Monotonicity of zeros of Jacobi-Sobolev type orthogonal polynomials
dc.contributor.author | Dimitrov, Dimitar Kolev [UNESP] | |
dc.contributor.author | Mello, Mirela V. [UNESP] | |
dc.contributor.author | Rafaeli, Fernando R. | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | |
dc.date.accessioned | 2014-05-20T14:01:39Z | |
dc.date.available | 2014-05-20T14:01:39Z | |
dc.date.issued | 2010-03-01 | |
dc.description.abstract | Consider the inner product< p, q > = Gamma(alpha + beta + 2)/2(alpha+beta+1) Gamma (alpha + 1)Gamma(beta +1) integral(t)(-t) p(x)q(x)(alpha) (1 + x)(beta) dx+ Mp(1)q(1)+ Np'(1)q'(1) + 1 (M) over tildep(-1)q(-1)+ (N) over tildep'(-1)q'(-1)where alpha, beta > -1 and M,N,(M) over tilde,(N) over tilde >= 0. If mu = (M,N,(M) over tilde,(N) over tilde), we denote by x(n,k)(mu)(alpha,beta), k =1,...n, the zeros of the n-th polynomial P(n)((alpha,beta,mu)) (x), orthogonal with respect to the above inner product. We investigate the location, interlacing properties, asymptotics and monotonicity of x(n,k)(mu)(alpha,beta) with respect to the parameters M, N,(M) over tilde,(N) over tilde in two important cases, when either i = N = 0 or N = 0. The results are obtained through careful analysis of the behavior and the asymptotics of the zeros of polynomials of the form p,,(x)= hn(x) + cgn(x) as functions of(C) 2010 IMACS. Published by Elsevier BA/. All rights reserved. | en |
dc.description.affiliation | Univ Estadual Paulista, IBILCE, Dept Ciencias Computacao & Estatist, São Paulo, Brazil | |
dc.description.affiliation | Univ Estadual Campinas, Inst Matemat Estatist & Computacao Cient, BR-13081970 Campinas, SP, Brazil | |
dc.description.affiliationUnesp | Univ Estadual Paulista, IBILCE, Dept Ciencias Computacao & Estatist, São Paulo, Brazil | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorshipId | CAPES: DGU 160/08 | |
dc.description.sponsorshipId | FAPESP: 03/01874-2 | |
dc.description.sponsorshipId | FAPESP: 07/02854-6 | |
dc.description.sponsorshipId | CNPq: 304830/2006-2 | |
dc.format.extent | 263-276 | |
dc.identifier | http://dx.doi.org/10.1016/j.apnum.2009.12.004 | |
dc.identifier.citation | Applied Numerical Mathematics. Amsterdam: Elsevier B.V., v. 60, n. 3, p. 263-276, 2010. | |
dc.identifier.doi | 10.1016/j.apnum.2009.12.004 | |
dc.identifier.issn | 0168-9274 | |
dc.identifier.lattes | 1681267716971253 | |
dc.identifier.uri | http://hdl.handle.net/11449/21755 | |
dc.identifier.wos | WOS:000276839200008 | |
dc.language.iso | eng | |
dc.publisher | Elsevier B.V. | |
dc.relation.ispartof | Applied Numerical Mathematics | |
dc.relation.ispartofjcr | 1.263 | |
dc.relation.ispartofsjr | 0,930 | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Web of Science | |
dc.subject | Jacobi orthogonal polynomials | en |
dc.subject | Jacobi-Sobolev type orthogonal polynomials | en |
dc.subject | Zeros | en |
dc.subject | Monotonicity | en |
dc.subject | Asymptotic | en |
dc.title | Monotonicity of zeros of Jacobi-Sobolev type orthogonal polynomials | en |
dc.type | Artigo | |
dcterms.license | http://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy | |
dcterms.rightsHolder | Elsevier B.V. | |
unesp.author.lattes | 1681267716971253 | |
unesp.campus | Universidade Estadual Paulista (Unesp), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Preto | pt |
unesp.department | Ciências da Computação e Estatística - IBILCE | pt |
Arquivos
Licença do Pacote
1 - 2 de 2
Nenhuma Miniatura disponível
- Nome:
- license.txt
- Tamanho:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição:
Nenhuma Miniatura disponível
- Nome:
- license.txt
- Tamanho:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição: