Antibacterial activity of a novel antimicrobial peptide [W7]KR12-KAEK derived from KR-12 against Streptococcus mutans planktonic cells and biofilms

Carregando...
Imagem de Miniatura

Data

2017-11-26

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

The aims of this study were to describe the synthesis of a novel synthetic peptide based on the primary structure of the KR-12 peptide and to evaluate its antimicrobial and anti-biofilm activities against Streptococcus mutans. The antimicrobial effect of KR-12 and [W7]KR12-KAEK was assessed by determining the minimum inhibitory (MIC) and minimum bactericidal (MBC) concentrations. The evaluation of anti-biofilm activity was assessed through total biomass quantification, colony forming unit counting and scanning electron microscopy. [W7]KR12-KAEK showed MIC and MBC values ranging from 31.25 to 7.8 and 62.5 to 15.6 μg ml−1, respectively. Furthermore, [W7]KR12-KAEK significantly reduced biofilm biomass (50–100%). Regarding cell viability, [W7]KR12-KAEK showed reductions in the number of CFUs at concentrations ranging from 62.5 to 7.8 μg ml−1 and 500 to 62.5 μg ml−1 with respect to biofilm formation and preformed biofilms, respectively. SEM micrographs of S. mutans treated with [W7]KR12-KAEK suggested damage to the bacterial surface. [W7]KR12-KAEK is demonstrated to be an antimicrobial agent to control microbial biofilms.

Descrição

Idioma

Inglês

Como citar

Biofouling, v. 33, n. 10, p. 835-846, 2017.

Itens relacionados