An optimized unsupervised manifold learning algorithm for manycore architectures

Carregando...
Imagem de Miniatura

Data

2018-01-01

Autores

Baldassin, Alexandro [UNESP]
Weng, Ying
Guimarães Pedronette, Daniel Carlos [UNESP]
Almeida, Jurandy

Título da Revista

ISSN da Revista

Título de Volume

Editor

Resumo

Multimedia data, such as images and videos, has become very popular in people's daily life as a result of the widespread use of mobile devices. The ever-increasing amount of such data, along with the necessity for real-time retrieval, has lead to the development of new methods that can process them in a timely fashion with acceptable accuracy. In this paper, we study the performance of ReckNN, an unsupervised manifold learning algorithm based on the reciprocal neighbourhood and the authority of ranked lists. Most of the related work in this field do not fully investigate optimization strategies, an aspect that is becoming more important with the high availability of manycore machines. In order to address that issue, we fully investigate optimization opportunities in this article and make the following three main contributions. Firstly, we develop an efficient and scalable method for storing and accessing the distances between objects (e.g., video or image) based on dictionaries. Secondly, we employ memoization to speed up the computation of authority scores, leading to a significant performance gain even on single-core architectures. Lastly, we devise and implement several parallelization strategies and show that they are scalable on a 72-core Intel machine. The experimental results with MPEG-7, Corel5k and MediaEval benchmarks show that the optimized ReckNN delivers both efficiency and scalability, highlighting the importance of the proposed optimizations for manycore machines.

Descrição

Palavras-chave

Efficiency, Multimedia retrieval, Parallelism, Scalability, Unsupervised learning

Como citar

Information Sciences.

Coleções