Decomposition of stochastic flow and an averaging principle for slow perturbations

Nenhuma Miniatura disponível

Data

2020-01-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

In this work we use the stochastic flow decomposition technique to get components that represent the dynamics of the slow and fast motion of a stochastic differential equation with a random perturbation. Assuming a Lipschitz condition for vector fields and an average principle we get an approximation for the slow motion. To obtain the estimate for the rate of convergence we use a distance function which is defined in terms of the height functions associated to an isometric embedding of the manifold into the Euclidean space. This metric is topologically equivalent to the Riemannian distance given by the infimum of the lengths of all admissible curves between two points and works well with stochastic calculation tools. Finally, we get an estimate for the approximation between the solution of perturbed system and the original process provided by the unperturbed.

Descrição

Idioma

Inglês

Como citar

Dynamical Systems.

Itens relacionados

Financiadores

Coleções