Integration of polyharmonic functions

Nenhuma Miniatura disponível
Data
1996-07-01
Autores
Dimitrov, D. K.
Título da Revista
ISSN da Revista
Título de Volume
Editor
Amer Mathematical Soc
Resumo
The results in this paper are motivated by two analogies. First, m-harmonic functions in R(n) are extensions of the univariate algebraic polynomials of odd degree 2m-1. Second, Gauss' and Pizzetti's mean value formulae are natural multivariate analogues of the rectangular and Taylor's quadrature formulae, respectively. This point of view suggests that some theorems concerning quadrature rules could be generalized to results about integration of polyharmonic functions. This is done for the Tchakaloff-Obrechkoff quadrature formula and for the Gaussian quadrature with two nodes.
Descrição
Palavras-chave
polyharmonic function, extended cubature formula, polyharmonic order of precision, polyharmonic monospline
Como citar
Mathematics of Computation. Providence: Amer Mathematical Soc, v. 65, n. 215, p. 1269-1281, 1996.