Directional locking and the influence of obstacle density on skyrmion dynamics in triangular and honeycomb arrays

Nenhuma Miniatura disponível

Data

2021-07-28

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Iop Publishing Ltd

Tipo

Artigo

Direito de acesso

Resumo

We numerically examine the dynamics of a single skyrmion driven over triangular and honeycomb obstacle arrays at zero temperature. The skyrmion Hall angle theta (sk), defined as the angle between the applied external drive and the direction of the skyrmion motion, increases in quantized steps or continuously as a function of the applied drive. For the obstacle arrays studied in this work, the skyrmion exhibits two main directional locking angles of theta (sk) = -30 degrees and -60 degrees. We show that these directions are privileged due to the obstacle landscape symmetry, and coincide with channels along which the skyrmion may move with few or no obstacle collisions. Here we investigate how changes in the obstacle density can modify the skyrmion Hall angles and cause some dynamic phases to appear or grow while other phases vanish. This interesting behavior can be used to guide skyrmions along designated trajectories via regions with different obstacle densities. For fixed obstacle densities, we investigate the evolution of the locked theta (sk) = -30 degrees and -60 degrees phases as a function of the Magnus force, and discuss possibilities for switching between these phases using topological selection.

Descrição

Idioma

Inglês

Como citar

Journal Of Physics-condensed Matter. Bristol: Iop Publishing Ltd, v. 33, n. 30, 9 p., 2021.

Itens relacionados