Ocular Recognition Using Deep Features for Identity Authentication

Nenhuma Miniatura disponível

Data

2020-01-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Ieee

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

Recently, ocular biometrics has been gaining importance in Biometrics due to the poor performance obtained in some cases by biometric systems based on characteristics of the whole face. This paper presents a new method for person authentication based on ocular deep features, which are extracted from the ocular region of the face by using a very deep CNN (Convolutional Neural Network). Another interesting aspect of our method is that, instead of using directly the deep features as input for the authentication system, it uses the difference between the probe and gallery deep features. So, our method adopts a pairwise strategy. A binary support vector machine is trained to determine whether a given difference vector is genuine or impostor. The proposed new method based on such pairwise strategy was evaluated using the ocular left set of the UBIPr dataset and five pre-trained CNN architectures. When using the pre-trained VGG-Face the proposed method obtained a state-of-the-art result (3.18% of Equal Error Rate).

Descrição

Idioma

Inglês

Como citar

Proceedings Of The 2020 International Conference On Systems, Signals And Image Processing (iwssip), 27th Edition. New York: Ieee, p. 155-160, 2020.

Itens relacionados

Coleções