Long-term land use in Amazon influence the dynamic of microbial communities in soil and rhizosphere

Nenhuma Miniatura disponível

Data

2022-03-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

Brazil has become the world leader in soy production, leading to an increase in the conversion of the Amazon rainforest into cropland. These actions had consequences for Forest's biodiversity, including the soil. In this sense, a better understanding of how long-term land use affects soil microbial communities, and their functions is urgent. This study aimed to evaluate the long-term land-use effects over bacterial and archaeal communities in soil and soybean rhizosphere in the Amazon region. For this, mesocosms experiments were carried out with Amazon soils with a history of 2-, 8-, and 20-years of agricultural use. We then assessed the bacterial and archaeal communities based on the 16S rRNA sequencing and real-time PCR. Our results showed a distinct bacterial community structure in soils with 20-years of land use. For both, bulk soil and soybean rhizosphere with 20-years of use, there was an increase in the abundance of Gemmatimonadetes, Chloroflexi, Firmicutes, and Planctomycetes. Interestingly, the niche occupancy analysis revealed an increase of specialist microbes in these soils. Also, these soils with 20-years of use showed a more complex network for both bulk and rhizosphere samples, highlighting the importance of Actinobacteria and Chloroflexi phyla to soil network structure. Our analysis also revealed an increased abundance of total bacteria, N-fixers, and ammonia-oxidizers bacteria in rhizosphere soil with 20-years of use. In addition, based on the potential functional analysis, nitrification processes increased in those soils. However, we noticed a homogenization in the abundance of the genes between rhizosphere and bulk soil with 20-years of use. In general, the differences were associated with changes in soil chemical characteristics such as pH, Ca2+, Mg2+, and organic matter, which are a consequence of liming and no-till practices over time. Our findings demonstrate that long-term agriculture in Amazon soils affects microbial community composition and functions, bringing new insights to better understand anthropogenic actions over the soil microbiome.

Descrição

Idioma

Inglês

Como citar

Rhizosphere, v. 21.

Itens relacionados

Financiadores

Coleções