Two-dimensional nonlinear map characterized by tunable Levy flights

Nenhuma Miniatura disponível

Data

2014-10-27

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Amer Physical Soc

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

After recognizing that point particles moving inside the extended version of the rippled billiard perform Levy flights characterized by a Levy-type distribution P(l) similar to l(-(1+alpha)) with alpha = 1, we derive a generalized two-dimensional nonlinear map M alpha able to produce Levy flights described by P(l) with 0 < alpha < 2. Due to this property, we call M alpha the Levy map. Then, by applying Chirikov's overlapping resonance criteria, we are able to identify the onset of global chaos as a function of the parameters of the map. With this, we state the conditions under which the Levy map could be used as a Levy pseudorandom number generator and furthermore confirm its applicability by computing scattering properties of disordered wires.

Descrição

Palavras-chave

Idioma

Inglês

Como citar

Physical Review E. College Pk: Amer Physical Soc, v. 90, n. 4, 5 p., 2014.

Itens relacionados