Design of nanostructured WO3·0.33H2O: Via combination of ultrasonic spray nozzle and microwave-assisted hydrothermal methods for enhancing isopropanol gas sensing at room temperature

Nenhuma Miniatura disponível

Data

2017-01-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

Hierarchical WO3·0.33H2O nanocolumns were prepared by a simple combination of ultrasonic spray nozzle (USN) and microwave-assisted hydrothermal (MAH) methods. The USN step promoted a high nucleation rate of H2WO4 clusters, while glycine played an important role in the crystal growth in a preferred direction. The MAH step was responsible for the crystallization of the single orthorhombic WO3·0.33H2O phase and the self-assembly of the hierarchical structure. The as-prepared sample was tested as a volatile organic compound (VOC) sensor at room temperature (22 °C) and wet conditions. Enhanced isopropanol sensitivity and selectivity were achieved due to the high specific surface area provided by the combination of USN and MAH methods. Thus, this synthesis strategy is a promising approach for fabricating different gas sensing devices.

Descrição

Palavras-chave

Idioma

Inglês

Como citar

CrystEngComm, v. 19, n. 20, p. 2733-2738, 2017.

Itens relacionados

Financiadores

Coleções