Disease persistence and serotype coexistence: An expected feature of human mobility
Nenhuma Miniatura disponível
Data
2019-08-15
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso aberto
Resumo
We present a stochastic model that mimics dengue transmission when two serotypes of the virus are circulating in a human population connected by a Watts–Strogatz complex network that reflects social interactions (human mobility). The influence of the number of connections per vertex and the network topology on the epidemics is analyzed. The first relation displays a sigmoid curve, while the second one shows that the increase in the network disorder facilitates disease spreading and serotype coexistence. The disease transmission thresholds for three network topology (regular, small-world and random) were obtained. Numerical results show that when coexistence of serotypes is a feasible outcome, negative correlation between the temporal evolution of the two serotype is more likely to occur. This could explain serotype dominance in consecutive epidemics.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Applied Mathematics and Computation, v. 355, p. 161-172.