Effects of a temperature dependent viscosity in surface nonlinear waves propagating in a shallow fluid heated from below

Nenhuma Miniatura disponível

Data

1992-09-28

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

The effects of a temperature dependent viscosity in surface nonlinear waves propagating in a shallow fluid heated from below are investigated. It is shown that the (2+1)-dimensional Burgers equation may appear as the equation governing the upper free surface perturbations of a Bénard system, even when the viscosity is assumed to depend on temperature. The critical Rayleigh number for the appearance of waves governed by the Kadomtsev-Petviashvili equation, however, will be smaller than R=30, which is the critical number obtained for a constant viscosity. © 1992.

Descrição

Palavras-chave

Idioma

Inglês

Como citar

Physics Letters A, v. 169, n. 4, p. 259-262, 1992.

Itens relacionados

Financiadores