Carbon nuclear magnetic resonance spectroscopic fingerprinting of commercial gasoline: Pattern-recognition analyses for screening quality control purposes

Nenhuma Miniatura disponível

Data

2010-06-30

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Elsevier B.V.

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

In this work, the combination of carbon nuclear magnetic resonance ((13)C NMR) fingerprinting with pattern-recognition analyses provides an original and alternative approach to screening commercial gasoline quality. Soft Independent Modelling of Class Analogy (SIMCA) was performed on spectroscopic fingerprints to classify representative commercial gasoline samples, which were selected by Hierarchical Cluster Analyses (HCA) over several months in retails services of gas stations, into previously quality-defined classes. Following optimized (13)C NMR-SIMCA algorithm, sensitivity values were obtained in the training set (99.0%), with leave-one-out cross-validation, and external prediction set (92.0%). Governmental laboratories could employ this method as a rapid screening analysis to discourage adulteration practices. (C) 2010 Elsevier B.V. All rights reserved.

Descrição

Idioma

Inglês

Como citar

Talanta. Amsterdam: Elsevier B.V., v. 82, n. 1, p. 392-397, 2010.

Itens relacionados