Effect of microstructure on the nanotube growth by anodic oxidation on Ti-10Nb alloy

Carregando...
Imagem de Miniatura

Data

2017-07-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Iop Publishing Ltd

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Several papers have reported the grown self-organized nanotube arrays on pure Ti and its alloys to improve the surface of these materials for biomedical applications. The growth of nanotubes can be influenced by microstructure of material; however, few papers concerning this topic have been published. The aim of this work was to investigate the morphology, the cross-section view and the oxides in nanotube arrays in relationship to the microstructure of the Ti-10Nb alloy. The growth of nanotubes on the Ti-10Nb alloy obtained by anodic oxidation (AO). The Ti-10Nb alloy is composed by alfa and beta phases that were investigated by metallographic analysis, patterns of x-ray diffraction and EDS analysis. SEM images and EDS analysis revealed the morphology was composed by self-organized nanotube arrays on the alpha phase and walls with transversal holes on beta phase. X-ray patterns show crystalline oxides formation. Raman spectrum confirms the presence of anatase and Nb2O5 oxides. A significant contribution of the Nb2O5 was observed by bi-dimensional (x, y) Raman mapping, which also showed that the all oxide film was homogeneous oxide distributed on Ti-10Nb alloy. The nanostructured films have higher thickness in the beta than in the alpha phase, and have a small different in structure and oxide composition; as observed by SEM and Raman mapping. The results indicate that the microstructure of the Ti-10Nb affects the nanotubes morphology and the cross-section view, but the oxide formation was similar for all regions analyzed.

Descrição

Idioma

Inglês

Como citar

Materials Research Express. Bristol: Iop Publishing Ltd, v. 4, n. 7, 10 p., 2017.

Itens relacionados