Stickiness in a bouncer model: A slowing mechanism for Fermi acceleration

dc.contributor.authorLivorati, André L. P.
dc.contributor.authorKroetz, Tiago
dc.contributor.authorDettmann, Carl P. [UNESP]
dc.contributor.authorCaldas, Iberê Luiz
dc.contributor.authorLeonel, Edson D. [UNESP]
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUTFPR Campus Pato Branco
dc.contributor.institutionUniversity of Bristol
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionICTP
dc.date.accessioned2022-04-29T04:35:28Z
dc.date.available2022-04-29T04:35:28Z
dc.date.issued2012-09-06
dc.description.abstractSome phase space transport properties for a conservative bouncer model are studied. The dynamics of the model is described by using a two-dimensional measure preserving mapping for the variables' velocity and time. The system is characterized by a control parameter ε and experiences a transition from integrable (ε=0) to nonintegrable (ε0). For small values of ε, the phase space shows a mixed structure where periodic islands, chaotic seas, and invariant tori coexist. As the parameter ε increases and reaches a critical value ε c, all invariant tori are destroyed and the chaotic sea spreads over the phase space, leading the particle to diffuse in velocity and experience Fermi acceleration (unlimited energy growth). During the dynamics the particle can be temporarily trapped near periodic and stable regions. We use the finite time Lyapunov exponent to visualize this effect. The survival probability was used to obtain some of the transport properties in the phase space. For large ε, the survival probability decays exponentially when it turns into a slower decay as the control parameter ε is reduced. The slower decay is related to trapping dynamics, slowing the Fermi Acceleration, i.e., unbounded growth of the velocity. © 2012 American Physical Society.en
dc.description.affiliationInstituto de Física IFUSP Universidade de São Paulo, USP Rua do Matão, Tr. R 187, 05314-970, São Paulo, SP
dc.description.affiliationDepartamento de Física Universidade Tecnológica Federal Do Paraná UTFPR Campus Pato Branco, 85503-390, Pato Branco, PR
dc.description.affiliationSchool of Mathematics University of Bristol, Bristol BS8 1TW
dc.description.affiliationDepartamento de Estatística Matemática Aplicada e Computação UNESP Univ Estadual Paulista, Av. 24A, 1515 Bela Vista, 13506-900, Rio Claro, SP
dc.description.affiliationAbdus Salam ICTP, 34151 Trieste
dc.description.affiliationUnespDepartamento de Estatística Matemática Aplicada e Computação UNESP Univ Estadual Paulista, Av. 24A, 1515 Bela Vista, 13506-900, Rio Claro, SP
dc.identifierhttp://dx.doi.org/10.1103/PhysRevE.86.036203
dc.identifier.citationPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics, v. 86, n. 3, 2012.
dc.identifier.doi10.1103/PhysRevE.86.036203
dc.identifier.issn1539-3755
dc.identifier.issn1550-2376
dc.identifier.scopus2-s2.0-84866361316
dc.identifier.urihttp://hdl.handle.net/11449/226969
dc.language.isoeng
dc.relation.ispartofPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
dc.sourceScopus
dc.titleStickiness in a bouncer model: A slowing mechanism for Fermi accelerationen
dc.typeArtigo

Arquivos