Comparing different methods for estimating hourly solar ultraviolet radiation: Empirical models, artificial neural network and support vector machine

Carregando...
Imagem de Miniatura

Data

2020-01-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

In the present paper, the comparison of three of the main estimation methods of solar radiation was performed: empirical models, Artificial Neural Network (ANN) and Support Vector Machine (SVM). Four classical empirical models were calibrated and validated in order to estimate hourly solar UV data in Botucatu, São Paulo State, Brazil. Taken the empirical models as reference of accuracy and set for input variables, the performance of ANN and SVM were assessed. Through the statistical parameters Mean Bias Error (MBE) and Mean Absolute Error (MAE) was confirmed the super-iority of the SVM over the ANN and empirical models. The SVM is capable to generate better results than ANN using a less number of input variables. Among all estimation methods, SVM using the set of input variables {UV0, KT } is con-sidered the best alternative due to the smaller number of input variables and relative precision.

Descrição

Idioma

Português

Como citar

Revista Brasileira de Meteorologia, v. 35, n. 1, p. 35-43, 2020.

Itens relacionados