Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

GNSS vector quality modelling combining Isolation Forest and Independent Vortices Search

dc.contributor.authorKoch, Ismael É.
dc.contributor.authorKlein, Ivandro
dc.contributor.authorGonzaga, Luiz
dc.contributor.authorRofatto, Vinicius F.
dc.contributor.authorMatsuoka, Marcelo T.
dc.contributor.authorMonico, João F.G. [UNESP]
dc.contributor.authorVeronez, Maurício R.
dc.contributor.institutionUnisinos University
dc.contributor.institutionFederal Institute of Santa Catarina
dc.contributor.institutionFederal University of Paraná
dc.contributor.institutionUniversidade Federal de Uberlândia (UFU)
dc.contributor.institutionFederal University of Rio Grande do Sul
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-29T08:36:56Z
dc.date.available2022-04-29T08:36:56Z
dc.date.issued2022-02-15
dc.description.abstractEstimating the quality of GNSS vectors is decisive in planning GNSS networks and in several land surveying activities. These vectors are indirectly present in many civil infrastructures usually in the first stages of constructions and thus of high importance. In this research we assembled over 1000 baselines producing an extensive database with over 170,000 processed vectors. We propose a novel identification of outlying GNSS vectors based on the Isolation Forest (IF) algorithm based on the vectors deviations. And a new procedure to build linear models based on metaheuristics and a penalty function. The linear regressions presented models with a coefficient of determination R2 up to 0.996. The observation time span variable remained in all equations at least twice, showing its importance for the outcome quality of a vector. Overall, the three-dimensional deviation of vectors processed with broadcast ephemeris is 2.4 times higher than for precise ephemerides.en
dc.description.affiliationGraduate Program in Applied Computing Unisinos University, Av. Unisinos, 950
dc.description.affiliationDepartment of Civil Construction Federal Institute of Santa Catarina
dc.description.affiliationGraduate Program in Geodetic Sciences Federal University of Paraná
dc.description.affiliationInstitute of Geography Federal University of Uberlandia
dc.description.affiliationGraduate Program in Remote Sensing Federal University of Rio Grande do Sul
dc.description.affiliationSão Paulo State University UNESP, Presidente Prudente
dc.description.affiliationUnespSão Paulo State University UNESP, Presidente Prudente
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdCAPES: 001
dc.identifierhttp://dx.doi.org/10.1016/j.measurement.2021.110455
dc.identifier.citationMeasurement: Journal of the International Measurement Confederation, v. 189.
dc.identifier.doi10.1016/j.measurement.2021.110455
dc.identifier.issn0263-2241
dc.identifier.scopus2-s2.0-85120436207
dc.identifier.urihttp://hdl.handle.net/11449/229994
dc.language.isoeng
dc.relation.ispartofMeasurement: Journal of the International Measurement Confederation
dc.sourceScopus
dc.subjectGNSS vectors
dc.subjectIndependent Vortices Search
dc.subjectIsolation Forest
dc.subjectMetaheuristics
dc.subjectModelling
dc.subjectOutlier detection
dc.titleGNSS vector quality modelling combining Isolation Forest and Independent Vortices Searchen
dc.typeArtigo
unesp.author.orcid0000-0003-3562-8554[1]
unesp.author.orcid0000-0002-5914-3546[7]
unesp.departmentEstatística - FCTpt

Arquivos