Invariants of the trace map and uniform spectral properties for discrete sturmian dirac operators

Nenhuma Miniatura disponível

Data

2019-04-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

We establish invariants for the trace map associated to a family of 1D discrete Dirac operators with Sturmian potentials. Using these invariants we prove that the operators have purely singular continuous spectrum of zero Lebesgue measure, uniformly on the mass and parameters that define the potentials. For rotation numbers of bounded density we prove that these Dirac operators have purely α-continuous spectrum, as to the Schr¨odinger case, for some α ∈ (0, 1). To the Sturmian Schrödinger and Dirac models we establish a comparison between invariants of the trace maps, which allows to compare the numbers α’s and lower bounds on transport exponents.

Descrição

Palavras-chave

Idioma

Inglês

Como citar

Osaka Journal of Mathematics, v. 56, n. 2, p. 391-416, 2019.

Itens relacionados

Financiadores

Coleções