Invariants of the trace map and uniform spectral properties for discrete sturmian dirac operators
Nenhuma Miniatura disponível
Data
2019-04-01
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
We establish invariants for the trace map associated to a family of 1D discrete Dirac operators with Sturmian potentials. Using these invariants we prove that the operators have purely singular continuous spectrum of zero Lebesgue measure, uniformly on the mass and parameters that define the potentials. For rotation numbers of bounded density we prove that these Dirac operators have purely α-continuous spectrum, as to the Schr¨odinger case, for some α ∈ (0, 1). To the Sturmian Schrödinger and Dirac models we establish a comparison between invariants of the trace maps, which allows to compare the numbers α’s and lower bounds on transport exponents.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Osaka Journal of Mathematics, v. 56, n. 2, p. 391-416, 2019.