Logo do repositório
 

Learning to classify seismic images with deep optimum-path forest

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

Due to the lack of labeled information, clustering techniques have been paramount in the last years once more. In this paper, inspired by the deep learning phenomenon, we presented a multi-scale approach to obtain more refined cluster representations of the Optimum-Path Forest (OPF) classifier, which has obtained promising results in a number of works in the literature. Here, we propose to fill a gap in OPF-based works by using a deep-driven representation of the feature space. Additionally, we validated the work in the context of high resolution seismic images aiming at petroleum exploration, as well as in general-purpose applications. Quantitative and qualitative analysis are conducted in order to assess the robustness of the proposed approach.

Descrição

Palavras-chave

Deep Representations, Image Clustering, Optimum-Path Forest, Seismic Images

Idioma

Inglês

Citação

Proceedings - 2016 29th SIBGRAPI Conference on Graphics, Patterns and Images, SIBGRAPI 2016, p. 401-407.

Itens relacionados

Financiadores

Unidades

Unidade
Faculdade de Ciências
FC
Campus: Bauru


Cursos de graduação

Programas de pós-graduação