Hyperbolicity of renormalization for dissipative gap mappings

Nenhuma Miniatura disponível

Data

2021-01-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

A gap mapping is a discontinuous interval mapping with two strictly increasing branches that have a gap between their ranges. They are one-dimensional dynamical systems, which arise in the study of certain higher dimensional flows, for example the Lorenz flow and the Cherry flow. In this paper, we prove hyperbolicity of renormalization acting on dissipative gap mappings, and show that the topological conjugacy classes of infinitely renormalizable gap mappings are manifolds.

Descrição

Idioma

Inglês

Como citar

Ergodic Theory and Dynamical Systems.

Itens relacionados

Financiadores

Coleções