Boundary crises and supertrack orbits in the Gauss map
Nenhuma Miniatura disponível
Data
2022-01-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Resenha
Direito de acesso
Resumo
Supertrack orbits are used to investigate boundary crises in an one-dimensional, two-parameter (ν, β), nonlinear Gauss map. After the crises, the time evolution of the orbit is shown to be pseudo-chaotic. We investigate the chaotic transient, that is, the time an orbit spends in a region where the chaotic attractor existed prior to the crisis, and confirm it decays exponentially with time. The relaxation time is given by a power-law τ∝ μγ with μ= | β- βc| corresponding to the distance measured in the parameter where the crises are observed. βc is the parameter that characterizes the occurrence of a boundary crisis and the numerical value of the power measured was γ= 1 / 2.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
European Physical Journal: Special Topics.