Polyurethanes synthetized with polyols of distinct molar masses: Use of the artificial neural network for prediction of degree of polymerization
dc.contributor.author | Dall Agnol, Lucas | |
dc.contributor.author | Ornaghi, Heitor Luiz | |
dc.contributor.author | Monticeli, Francisco [UNESP] | |
dc.contributor.author | Dias, Fernanda Trindade Gonzalez | |
dc.contributor.author | Bianchi, Otavio | |
dc.contributor.institution | Univ Caxias Do Sul UCS | |
dc.contributor.institution | Fed Univ Latin Amer Integrat UNILA | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Fed Inst Educ Sci & Technol Rio Grande Sul IFRS | |
dc.contributor.institution | Fed Univ Rio Grande Sul UFRGS | |
dc.date.accessioned | 2021-06-25T15:03:24Z | |
dc.date.available | 2021-06-25T15:03:24Z | |
dc.date.issued | 2021-04-27 | |
dc.description.abstract | The molar mass of the polyurethanes (PUs)' reagents directly influences their thermal response, affecting both the polymerization process and the enthalpy and the degree of reaction. This study reports applying an artificial neural network (ANN), associated with surface response methodology (SRM) models, to predict the calorimetric behavior of certain PU's bulk polymerizations. A noncatalyzed reaction between an aliphatic hexamethylene diisocyanate (HDI) and a polycarbonate diol (PCD) with distinct molar masses (500, 1000, and 2000 g/mol) was proposed. A high level of reliability of the predicted calorimetric curves was obtained due to an excellent agreement between theoretical and modeled results, enabling creating a 3D surface response to predict the reaction kinetics. Also, it was possible to observe that the polymerization kinetics is affected by the -OH group's association phenomena. The applied methodology can be extended for other materials or properties of interest. | en |
dc.description.affiliation | Univ Caxias Do Sul UCS, Postgrad Program Mat Sci & Engn PGMAT, Caxias Do Sul, RS, Brazil | |
dc.description.affiliation | Fed Univ Latin Amer Integrat UNILA, Foz Do Iguacu, Parana, Brazil | |
dc.description.affiliation | Sao Paulo State Univ Unesp, Sch Engn, Dept Mat & Technol, Guaratingueta, Brazil | |
dc.description.affiliation | Fed Inst Educ Sci & Technol Rio Grande Sul IFRS, Postgrad Program Technol & Mat Engn PPG TEM, Campus Feliz, Porto Alegre, RS, Brazil | |
dc.description.affiliation | Fed Univ Rio Grande Sul UFRGS, Dept Mat Engn DEMAT, Porto Alegre, RS, Brazil | |
dc.description.affiliationUnesp | Sao Paulo State Univ Unesp, Sch Engn, Dept Mat & Technol, Guaratingueta, Brazil | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorshipId | CAPES: 001 | |
dc.format.extent | 9 | |
dc.identifier | http://dx.doi.org/10.1002/pen.25702 | |
dc.identifier.citation | Polymer Engineering And Science. Hoboken: Wiley, 9 p., 2021. | |
dc.identifier.doi | 10.1002/pen.25702 | |
dc.identifier.issn | 0032-3888 | |
dc.identifier.uri | http://hdl.handle.net/11449/210275 | |
dc.identifier.wos | WOS:000644475700001 | |
dc.language.iso | eng | |
dc.publisher | Wiley-Blackwell | |
dc.relation.ispartof | Polymer Engineering And Science | |
dc.source | Web of Science | |
dc.subject | artificial neural network | |
dc.subject | differential calorimetric analysis | |
dc.subject | molar mass | |
dc.subject | polyurethane | |
dc.title | Polyurethanes synthetized with polyols of distinct molar masses: Use of the artificial neural network for prediction of degree of polymerization | en |
dc.type | Artigo | |
dcterms.license | http://olabout.wiley.com/WileyCDA/Section/id-406071.html | |
dcterms.rightsHolder | Wiley-Blackwell | |
unesp.department | Materiais e Tecnologia - FEG | pt |