Polyurethanes synthetized with polyols of distinct molar masses: Use of the artificial neural network for prediction of degree of polymerization

dc.contributor.authorDall Agnol, Lucas
dc.contributor.authorOrnaghi, Heitor Luiz
dc.contributor.authorMonticeli, Francisco [UNESP]
dc.contributor.authorDias, Fernanda Trindade Gonzalez
dc.contributor.authorBianchi, Otavio
dc.contributor.institutionUniv Caxias Do Sul UCS
dc.contributor.institutionFed Univ Latin Amer Integrat UNILA
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionFed Inst Educ Sci & Technol Rio Grande Sul IFRS
dc.contributor.institutionFed Univ Rio Grande Sul UFRGS
dc.date.accessioned2021-06-25T15:03:24Z
dc.date.available2021-06-25T15:03:24Z
dc.date.issued2021-04-27
dc.description.abstractThe molar mass of the polyurethanes (PUs)' reagents directly influences their thermal response, affecting both the polymerization process and the enthalpy and the degree of reaction. This study reports applying an artificial neural network (ANN), associated with surface response methodology (SRM) models, to predict the calorimetric behavior of certain PU's bulk polymerizations. A noncatalyzed reaction between an aliphatic hexamethylene diisocyanate (HDI) and a polycarbonate diol (PCD) with distinct molar masses (500, 1000, and 2000 g/mol) was proposed. A high level of reliability of the predicted calorimetric curves was obtained due to an excellent agreement between theoretical and modeled results, enabling creating a 3D surface response to predict the reaction kinetics. Also, it was possible to observe that the polymerization kinetics is affected by the -OH group's association phenomena. The applied methodology can be extended for other materials or properties of interest.en
dc.description.affiliationUniv Caxias Do Sul UCS, Postgrad Program Mat Sci & Engn PGMAT, Caxias Do Sul, RS, Brazil
dc.description.affiliationFed Univ Latin Amer Integrat UNILA, Foz Do Iguacu, Parana, Brazil
dc.description.affiliationSao Paulo State Univ Unesp, Sch Engn, Dept Mat & Technol, Guaratingueta, Brazil
dc.description.affiliationFed Inst Educ Sci & Technol Rio Grande Sul IFRS, Postgrad Program Technol & Mat Engn PPG TEM, Campus Feliz, Porto Alegre, RS, Brazil
dc.description.affiliationFed Univ Rio Grande Sul UFRGS, Dept Mat Engn DEMAT, Porto Alegre, RS, Brazil
dc.description.affiliationUnespSao Paulo State Univ Unesp, Sch Engn, Dept Mat & Technol, Guaratingueta, Brazil
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdCAPES: 001
dc.format.extent9
dc.identifierhttp://dx.doi.org/10.1002/pen.25702
dc.identifier.citationPolymer Engineering And Science. Hoboken: Wiley, 9 p., 2021.
dc.identifier.doi10.1002/pen.25702
dc.identifier.issn0032-3888
dc.identifier.urihttp://hdl.handle.net/11449/210275
dc.identifier.wosWOS:000644475700001
dc.language.isoeng
dc.publisherWiley-Blackwell
dc.relation.ispartofPolymer Engineering And Science
dc.sourceWeb of Science
dc.subjectartificial neural network
dc.subjectdifferential calorimetric analysis
dc.subjectmolar mass
dc.subjectpolyurethane
dc.titlePolyurethanes synthetized with polyols of distinct molar masses: Use of the artificial neural network for prediction of degree of polymerizationen
dc.typeArtigo
dcterms.licensehttp://olabout.wiley.com/WileyCDA/Section/id-406071.html
dcterms.rightsHolderWiley-Blackwell
unesp.departmentMateriais e Tecnologia - FEGpt

Arquivos