Influence of transducer orientation on shear wave velocity measurements of the iliotibial band

Nenhuma Miniatura disponível




Besomi, Manuela
Nava, Guilherme Thomaz de Aquino [UNESP]
van den Hoorn, Wolbert
Hug, François
Vicenzino, Bill
Hodges, Paul W.

Título da Revista

ISSN da Revista

Título de Volume



Tissue anisotropy influences estimation of mechanical properties of connective tissues, such as the iliotibial band (ITB). This study investigated the influence of ultrasound transducer rotation and tilt on shear wave velocity (SWV, an index of stiffness) measurements of the ITB and the intra-rater repeatability of SWV measurements in the longitudinal direction. SWV was measured unilaterally (dominant limb) using ultrasound shear wave elastography in the middle region of the ITB in supine at rest (20-25° knee flexion) in ten healthy volunteers (4 females). A 3-dimensional video system provided real-time feedback of probe orientation with respect to the thigh. Measurements were made at 10° increments of probe rotation, from longitudinal to transverse alignment relative to the approximate direction of ITB fibres, and 5-10° tilts about the longitudinal and sideways axes of the transducer. One-way repeated measures ANOVA compared SWV between angles and tilts. Intraclass correlation coefficients (ICCs) and standard error of measurement (SEM) were used to calculate repeatability for two to five (longitudinal only) repetitions. SWV was greatest when the transducer was aligned to ITB fibres (longitudinal: 10.5 ± 1.7 m/s) and lowest when perpendicular (transverse: 5.8 ± 2.4 m/s). Compared to longitudinal alignment, SWV decreased significantly (p < 0.01) when the transducer was rotated 20° or more. Tilted measurements did not differ between angles. Intra-rater repeatability was excellent with the average of two measurements (ICC = 0.99, 95% CI 0.95, 0.99; SEM = 0.31 m/s). These findings show that SWV changes with orientation relative to fibre direction. Transducer orientation requires careful control to ensure comparable measures.



Anisotropy, Iliotibial band, Shear wave elastography, Stiffness

Como citar

Journal of Biomechanics, v. 120.