Estudo de ciclos limites em sistemas diferenciais lineares por partes
Carregando...
Data
2012-02-28
Autores
Orientador
Roberto, Luci Any Francisco
Buzzi, Claudio Aguinaldo
Coorientador
Pós-graduação
Matemática - IBILCE
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Estadual Paulista (Unesp)
Tipo
Dissertação de mestrado
Direito de acesso
Acesso aberto
Resumo
Resumo (português)
Neste trabalho temos como objetivo estudar o número e a distribuição de ciclos limites em sistemas diferenciais lineares por partes. Em particular estudamos o número de ciclos limites do sistema diferencial linear por partes planar ˙x = −y − ε φ ( x) , ˙y = x, onde ε 6= 0 é um parâmetro pequeno e φ é uma função periódica linear por partes ímpar de período 4 . Provamos que dado um inteiro arbitário positivo n, o sistema acima possui exatamente n ciclos limites na faixa |x| ≤ 2 (n + 1 ). Consequentemente, existem sistemas diferenciais lineares por partes contendo uma infinidade de ciclos limites no plano real. Inicialmente obtemos uma quota inferior par a o número destes ciclos limites na faixa | x| ≤ 2 (n + 1 ) via Teoria do Averaging . Em seguida , utilizando a Teoria de Campos de Vetores Rodados, verificamos que o sistema acima tem exatamente n ciclos limites na faixa | x| ≤ 2 (n + 1 )
Resumo (inglês)
The main goal of this work aim to study the number and distribution of limit cycles in piecewise linear differential systems. In particular we consider the planar piecewise linear differential system ˙x = −y − ε φ ( x) , ˙y = x, where ε 6= 0 is a small parameter and φ is an odd piecewise linear periodic function of period 4 . We prove that given an arbitrary positive integer n, the system above has exactly n limit cycles in the strip | x| ≤ 2 (n + 1 ) . Consequently, there are piecewise differential systems containing an infinite number of limit cycles in the real plane. First we get a lower bound on the number of limit cycles in the strip |x| ≤ 2 (n + 1 ) via Averaging Theory. In the following , using the Theory of Rotated Vector Fields, we see that above system has exactly n limit cycles in the strip | x| ≤ 2 (n + 1 )
Descrição
Idioma
Português
Como citar
MORETTI JUNIOR, Adimar. Estudo de ciclos limites em sistemas diferenciais lineares por partes. 2012. 125 f. Dissertação (mestrado) - Universidade Estadual Paulista, Instituto de Biociências, Letras e Ciências Exatas, 2012.