Loops in generalized reeb graphs associated to stable circle-valued functions

Nenhuma Miniatura disponível

Data

2020-01-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

Let N be a smooth compact, connected and orientable 2-manifold with or without boundary. Given a stable circle-valued function γ: N → S1, we introduced a topological invariant associated to γ, called generalized Reeb graph. It is a generalized version of the classical and well known Reeb graph. The purpose of this paper is to investigate the number of loops in generalized Reeb graphs associated to stable circle-valued functions γ: N → S1. We show that the number of loops depends on the genus of N, the number of boundary components of N, and the number of open saddles of γ. In particular, we show a class of functions whose generalized Reeb graphs have the maximal number of loops.

Descrição

Idioma

Inglês

Como citar

Journal of Singularities, v. 22, p. 104-113.

Itens relacionados

Financiadores