Leaching optimization of mining wastes with lizardite and brucite contents for use in indirect mineral carbonation through the pH swing method
Carregando...
Arquivos
Data
2017-01-10
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso aberto
Resumo
This study investigated the leaching process in order to maximize Mg and Fe extraction and to produce amorphous silica (SiO2) with high purity. For this, a mining waste identified as S-GO was employed; which is a serpentinite rock with high lizardite 1T and native brucite contents. A Taguchi Experiment Design was used in order to assess the parameters that influence the leaching process such as: granulometry, hydrochloric acid concentration (HCl), leaching temperature, and mass/volume ratio. Furthermore, thermogravimetric analysis (TGA) was done to understand the interrelation between the mineral structure and leaching performance. Results show that lizardite 1T-bearing serpentinite presents a low content of tetrahedral Al3+ and high octahedral Fe3+ contents on S-GO. Native brucite delayed the formation of a hydrated silica layer and improved dissolution of serpentines. For this, Mg and Fe extractions are efficient, reaching 88 ± 2% of Mg and Fe extracted during the first 30 min of reaction, under mild process conditions: stoichiometric mass/volume ratio, 1M HCl concentration, pressure of 1 bar, temperature of 100 °C, and 300 μm particle size. On the other hand, an excess of acid improves Mg and Fe extraction by only 10 ± 5% for S-GO. Such characteristics reduce energetic penalties and costs involved on indirect mineral carbonation processes by the pH swing method.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Journal of Cleaner Production, v. 141, p. 1324-1336.